ECE/CS 757: Advanced
Computer Architecture Il

Instructor:Mikko H Lipasti

Spring 2009
University of Wisconsin-Madison

Lecture notes based on slides created by John Shen,
Mark Hill, David Wood, Guri Sohi, and Jim Smith,
Natalie Enright Jerger, and probably others

Multicore Processors

* Readings:
— CMP design space exploration (thermal vs. power)
— Heterogenous CMP
— Hill's Amdahl's law
— Piranha
— Multicore CPUs for the masses
— Victim replication

Obijective

* Use available transistors efficiently
— Provide better perf, perf/cost, perf/watt
* Effectively share expensive resources
— Socket/pins:
* DRAM interface

* Coherence interface
* 1/Ointerface

¢ On-chip area/power
— Mem controller
— Cache
— FPU? (Conjoined cores, e.g. Niagara)

High-Level Design Issues

1. Where to connect cores?
— Time to market:
* at off-chip bus (Pentium D)
* at coherence interconnect (Opteron)
— Requires substantial (re)design:
¢ at L2 (Power 4, Core Duo, Core 2 Duo)
 at L3 (Opteron, Itanium)

High-Level Design Issues

2. Share caches?
— yes: all designs that connect at L2 or L3
— no: all designs that don't
3. Coherence?
— Private caches? Reuse existing MP/socket coherence
* Optimize for on-chip sharing? [Zhang reading]
— Shared caches?

* Need new coherence protocol for on-chip caches

* Often write-through L1 with back-invalidates for other caches
(mini-directory)

ECE 752: Advanced Computer Architecture |

High-Level Design Issues

4. How to connect?
— Off-chip bus? Time-to-market hack, not scalable
— Existing pt-to-pt coherence interconnect (hypertransport)
— Shared L2/13:
* Crossbar, up to 3-4 cores (8 weak cores in Niagara)
* 1D "dancehall” organization
— On-chip bus? Not scalable (8 weak cores in Piranha)
— Interconnection network
* scalable, but high overhead
* E.g. 2D tiled organization, mesh interconnect

Shared vs. Private Caches
¢ Bandwidth issues
— Data: if shared then banked/interleaved
— Tags: snoop b/w into L2, L1 if not inclusive
e Misses: per core vs. per chip
— Shared: cold/capacity/conflict/comm
— Private: cold/capacity/conflict/comm

Shared vs. Private Caches
e Access latency: fixed vs. NUCA (interconnect)
— Classic UMA (dancehall) vs. NUMA
e Complexity due to bandwidth:
— Arbitration
— Concurrency/interaction
e Coherent vs. non-coherent shared cache
— LLC can be "memory cache” below “coherence”

Multicore Coherence

¢ All private caches:
— reuse existing protocol, if scalable enough
* Some shared cache
— New LL shared cache is non-coherent (easy)
 Use existing protocol to find blocks in private L2/L1
« Serialize L3 access; use as memory cache
— New shared LLC is coherent (harder)
* Complexity of multilevel protocols is underappreciated
¢ Could flatten (treat as peers) but:
— Lose opportunity
— May not be possible (due to inclusion, WB/WT handling)
« Combinatorial explosion due to multiple protocols interacting

9

Multicore Coherence

¢ Shared L2 is coherent via writethru L1

— Still need sharing list to forward invalidates/writes
(or broadcast)

— Ordering of WT stores and conflicting loads,
coherence messages not trivial

e Shared L2 with writeback L1
— Combinatorial explosion of multiple protocols

10

Multicore Interconnects

* Bus/crossbar - dismiss as short-term solutions?
¢ Point-to-point links, many possible topographies
— 2D (suitable for planar realization)
* Ring
¢ Mesh
* 2D torus
— 3D - may become more interesting with 3D packaging (chip
stacks)
¢ Hypercube
* 3D Mesh
¢ 3D torus

11

ECE 752: Advanced Computer Architecture |

On-Chip Bus/Crossbar

¢ Used widely (Power4/5/6, Piranha, Niagara, etc.)
— Assumed not scalable
— Is this really true, given on-chip characteristics?
— May scale "far enough" : watch out for arguments at the
limit
¢ Simple, straightforward, nice ordering properties
— Wiring is a nightmare (for crossbar)
— Bus bandwidth is weak (even multiple busses)

— Compare piranha 8-lane bus (32GB/s) to Power4 crossbar
(100+GB/s)
— Workload: commercial vs. scientific

12

On-Chip Ring On-Chip Mesh
¢ Point-to-point ring interconnect ¢ Widely assumed in academic literature
— Simple, easy ¢ Tilera, Intel 80-core prototype

— Nice ordering properties (unidirectional)
— Every request a broadcast (all nodes can snoop)

— Scales poorly: O(n) latency, fixed bandwidth

¢ Not symmetric, so have to watch out for load
imbalance on inner nodes/links

— 2D torus: wraparound links to create symmetry

¢ Optical ring (nanophotonic) « Not obviously planar
— HP Labs Corona project ¢ Can be laid out in 2D but longer wires, more
int ting link
— Latency is arguably O(sqgrt(n)) intersecting m. s
 Covert switching — broadcast not easy any more * Latency, bandwidth scale well
— Still fixed bandwidth (but lots of it) Lots of existing literature

13 14

CMP Examples IBM Power4: Example CMP
. . Powerd core0 Powerd corel
¢ Chip Multiprocessors (CMP) o] [ow] [] [oe]
» Becoming very popular
Processor Cores/ Multi- Resources shared Crossbar interconnect Coperent
Chlp threaded’) POSTQ PISTQ interface
IBM Power 4 2 No L2/L3, system interface
vosta Fista | [moste riste | [wste rista
1BM Power 5 2 Yes (2T) | Core, L2/L3, system interface gle, Bl
Sun Ultrasparc 2 No System interface %E E %E % %E % §
Sun Niagara 8 Yes (4T) | Everything MSHR SNPQ WBQ MSHR SNPQ WBQ | [MsHR sNPQ wa Q| [MsHR sNPQ wBQ ::.
Intel Pentium D 2 Yes (2T) | Core, nothing else E E E HEH Q EEHIEEE
AMD Opteron 2 No System interface (socket) SiKBL2ie [— - ’HT 7 TH
K2 [¥] K2}
Address/ Address/ Address/
response data response data response data
I 15 e o ot g o

Multithreading vs. Multicore

Multicore Summary

MT Approach Resources shared between threads Context Switch Mechanism
None Everything Explicit operating system context . . .
switch ¢ Objective: resource sharing
Fine-grained Everything but register file and control logic/state | Switch every cycle

— Where to connect

Coarse-grained | Everything but I-fetch buffers, register file and Switch on pipeline stall
con trol logic/state

— Cache sharing

SMT Everything but instruction fetch buffers, return All contexts concurrently active; no
address stack, architected register file, control switching — Coherence
logic/state, reorder buffer, store queue, etc.

— How to connect

CMT Various core components (e.g. FPU), secondary | All contexts concurrently active; no
cache, system interconnect switching .
¢ Readings
CMP Secondary cache, system interconnect All contexts concurrently active; no
switching
* Many approaches for executing multiple threads on a
single die
— Mix-and-match: IBM Power5 CMP+SMT
2005 Mikko Lipast 17 18

ECE 752: Advanced Computer Architecture |

