Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
What is an Interconnection Network?

Computer Architecture
- Application
- Algorithm
- Programming Language
- Operating System
- Instruction Set Architecture
- Microarchitecture
- Register Transfer Level
- Circuits
- Devices
- Technology

Communication
- Logic
- Mem
- Logic
- Mem
- Logic
- Mem
What is an Interconnection Network?

- **Application**: Ideally wants low-latency, high-bandwidth, dedicated channels between logic and memory
- **Technology**: Dedicated channels too expensive in terms of area and power
What is an Interconnection Network?

- An **Interconnection Network** is a programmable system that transports data between terminals.
- **Technology**: Interconnection network helps efficiently utilize scarce resources.
- **Application**: Managing communication can be critical to performance.
Interconnection Networks

Introduction

• **Interconnection networks** should be designed
• to transfer the **maximum amount of information**
• within the **least amount of time** (and cost, power constraints)
• so as not to bottleneck the system
Types of Interconnection Networks

• Interconnection networks can be grouped into four domains
 – Depending on number and proximity of devices to be connected

• **On-Chip Networks (OCNs or NoCs)**
 – Devices include microarchitectural elements (functional units, register files), caches, directories, processors
 – Current/Future systems: dozens, hundreds of devices
 • Ex: Intel TeraFLOPS research prototypes – 80 cores
 • Intel Single-chip Cloud Computer – 48 cores
 – Proximity: millimeters
Types of Interconnection Networks (2)

• System/Storage Area Networks (SANs)
 – Multiprocessor and multicomputer systems
 • Interprocessor and processor-memory interconnections
 – Server and data center environments
 • Storage and I/O components
 – Hundreds to thousands of devices interconnected
 • IBM Blue Gene/L supercomputer (64K nodes, each with 2 processors)
 – Maximum interconnect distance: tens of meters (typical) to a few hundred meters
 – Examples (standards and proprietary)
 • InfiniBand, Myrinet, Quadrics, Advanced Switching Interconnect
Types of Interconnection Networks (3)

- **Local Area Networks (LANs)**
 - Interconnect autonomous computer systems
 - Machine room or throughout a building or campus
 - Hundreds of devices interconnected (1,000s with bridging)
 - Maximum interconnect distance
 - few kilometers to few tens of kilometers
 - Example (most popular): Ethernet, with 10 Gbps over 40Km
- **Wide Area Networks (WANs)**
 - Interconnect systems distributed across globe
 - Internetworking support required
 - Many millions of devices interconnected
 - Max distance: many thousands of kilometers
 - Example: ATM (asynchronous transfer mode)
Interconnection Network Domains

Distance (meters)

Number of devices interconnected

Local Area Networks

System/Storage Area Networks

Metropolitan Area Networks

Wide Area Networks

Distance: 10^{-3} to 10^6

Number of devices: 1 to $>100,000$

Slide courtesy Timothy Mark Pinkston and José Duato
Interconnection Network Domains

- Local Area Networks
- Metropolitan Area Networks
- Wide Area Networks
- System/Storage Area Networks
- On-Chip Interconnection Networks/Networks-on-Chip

Distance (meters)

Number of devices interconnected

Slide courtesy Timothy Mark Pinkston and José Duato
Why Study Networks on Chip?

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond
Why Study On-Chip Networks?

Transistors (Thousands)

Parallel App Performance

Single-Thread Performance (SpecINT)

Frequency (MHz)

Typical Power (Watts)

Number of Cores

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

Spring 2014
Example of Multi- and Many-Core Architectures

- 256 Cores
 - 4-way SIMD FMACs @ 2.5–5 GHz
 - 5–10 TFlops on one chip
 - Some apps require 1 byte/flop
 - Need 5–10 TB/s of off-chip BW
 - Need 5–10 TB/s of on-chip BW too!

Manycore Era

Number of Cores

286 386 486 Pentium P2 P3 P4 Athalon Core2 XBox360 Power6 Itanium Nehalem Cell Niagara XLR RAW Tilera TILE64 Cavium Octeon NVIDIA GT200 Intel TFlops Intel TFlops

Spring 2014
ECE 1749H: Interconnection Networks (Enright Jerger)
Why study interconnects?

• They provide external connectivity from system to outside world
 – Also, connectivity within a single computer system at many levels
 • I/O units, boards, chips, modules and blocks inside chips

• Trends: high demand on communication bandwidth
 – increased computing power and storage capacity
 – switched networks are replacing buses

• Computer architects/engineers must understand interconnect problems and solutions in order to more effectively design and evaluate systems
On-Chip Networks (OCN or NoCs)

• Why On-Chip Network?
 – Ad-hoc wiring does not scale beyond a small number of cores
 • Prohibitive area
 • Long latency

• OCN offers
 – scalability
 – efficient multiplexing of communication
 – often modular in nature (ease verification)
Differences between on-chip and off-chip networks

• Significant research in multi-chassis interconnection networks (off-chip)
 – Supercomputers
 – Clusters of workstations
 – Internet routers

• Leverage research and insight but...
 – Constraints are different
 – New opportunities
Off-chip vs. on-chip

- **Off-chip:** I/O bottlenecks
 - Pin-limited bandwidth
 - Inherent overheads of off-chip I/O transmission

- **On-chip**
 - Wiring constraints
 - Metal layer limitations
 - Horizontal and vertical layout
 - Short, fixed length
 - Repeater insertion limits routing of wires
 - Avoid routing over dense logic
 - Impact wiring density
Off-Chip vs On-Chip

• On-Chip
 – Power
 • Consume 10-15% or more of die power budget
 – Latency
 • Different order of magnitude
 • Routers consume significant fraction of latency
New opportunities

• Abundant wiring
 – Change in relative cost of wires and buffers
 – Many short flits

• Tightly integrated into system
 – Not commodity – fully customized design
 – Allows for optimization with uncore
 • Cache coherence

• Emerging technology
 – Optics
 – 3D
On-Chip Network Evolution

• Ad hoc wiring
 – Small number of nodes

• Buses and Crossbars
 – Simplest variant of on-chip networks
 – Low core counts
 – Like traditional multiprocessors
 • Bus traffic quickly saturates with a modest number of cores
 – Crossbars: higher bandwidth
 • Poor area and power scaling
Multicore Examples (1)

Sun Niagara

• Niagara 2: 8x9 crossbar (area \(\approx\) core)
• Rock: Hierarchical crossbar (5x5 crossbar connecting clusters of 4 cores)
Multicore Examples (2)

- IBM Cell
- Element Interconnect Bus
 - 12 elements
 - 4 unidirectional rings
 - 16 Bytes wide
 - Operates at 1.6 GHz
Many Core Example

• Intel TeraFLOPS
 – 80 core prototype
 – 5 GHz
 – Each tile:
 • Processing engine + on-chip network router
Many-Core Example (2): Intel SCC

- Intel’s Single-chip Cloud Computer (SCC) uses a 2D mesh with state of the art routers

Courtesy: Jason Howard, Intel
Performance and Cost

- Performance: latency and throughput
- Cost: area and power

Zero load latency

Saturation throughput

Latency (sec)

Offered Traffic (bits/sec)
Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
Readings
