Interconnection Networks: Topology

Prof. Natalie Enright Jerger
Topology Overview

• Definition: determines arrangement of channels and nodes in network
 – Analogous to road map

• Often first step in network design

• Significant impact on network cost-performance
 – Determines number of hops
 • Latency
 • Network energy consumption
 – Implementation complexity
 • Node degree
 • Ease of layout
ABSTRACT METRICS
Abstract Metrics

• Use metrics to evaluate performance and cost of topology

• Also influenced by routing/flow control
 – At this stage
 • Assume ideal routing (perfect load balancing)
 • Assume ideal flow control (no idle cycles on any channel)
Abstract Metrics: Degree

• Switch Degree: number of links at a node
 – Proxy for estimating cost
 • Higher degree requires more links and port counts at each router
Abstract Metrics: Hop Count

• Path: ordered set of channels between source and destination

• Hop Count: number of hops a message takes from source to destination
 – Simple, useful proxy for network latency
 • Every node, link incurs some propagation delay even when no contention

• Minimal hop count: smallest hop count connecting two nodes
Hop Count

• Network **diameter**: large min hop count in network

• Average minimum hop count: average across all src/dst pairs
 – Implementation may incorporate non-minimal paths
 • Increases average hop count
• Uniform random traffic
 – Ring > Mesh > Torus
• Derivations later
Latency

• Time for packet to traverse network
 – Start: head arrives at input port
 – End: tail departs output port

• Latency = Head latency + serialization latency
 – Serialization latency: time for packet with Length L to cross channel with bandwidth b (L/b)

• Approximate with hop count
 – Other design choices (routing, flow control) impact latency
 • Unknown at this stage
Abstract Metrics: Maximum Channel Load

• Estimate max **bandwidth** the network can support
 – Max bits per second (bps) that can be injected by every node before it saturates
 • **Saturation**: network cannot accept any more traffic

– Determine most congested link
 • For given traffic pattern
 • Will limit overall network bandwidth
 • Estimate load on this channel
Maximum Channel Load

• Preliminary
 – Don’t know specifics of link yet
 – Define relative to injection load

• Channel load of 2
 – Channel is loaded with twice injection bandwidth
 – If each node injects a flit every cycle
 • 2 flits will want to traverse bottleneck channel every cycle
 • If bottleneck channel can only handle 1 flit per cycle
 – Max network bandwidth is ½ link bandwidth
 – A flit can be injected every other cycle
Maximum Channel Load Example

- Uniform random
 - Every node has equal probability of sending to every node
- Identify bottleneck channel
- Half of traffic from every node will cross bottleneck channel
 - \(8 \times \frac{1}{2} = 4\)
- Network saturates at \(\frac{1}{4}\) injection bandwidth
Bisection Bandwidth

• Common off-chip metric
 – Proxy for cost
 – Amount of global wiring that will be necessary
 – Less useful for on-chip
 • Global on-chip wiring considered abundant

• Cuts: partition all the nodes into two disjoint sets
 – Bandwidth of a cut

• Bisection
 – A cut which divides all nodes into (nearly) half
 – Channel bisection \rightarrow min. channel count over all bisections
 – Bisection bandwidth \rightarrow min. bandwidth over all bisections

• With uniform traffic
 – ½ of traffic crosses bisection
• Bisection = 4 (2 in each direction)
• With uniform random traffic
 – 3 sends 1/8 of its traffic to 4,5,6
 – 3 sends 1/16 of its traffic to 7 (2 possible shortest paths)
 – 2 sends 1/8 of its traffic to 4,5
 – Etc
• Channel load = 1
Path Diversity

- Multiple shortest paths between source/destination pair (R)
- Fault tolerance
- Better **load balancing** in network
- Routing algorithm should be able to exploit path diversity
NETWORK EVALUATION
Evaluating Networks

• Analytical and theoretical analysis
 – E.g. mathematical derivations of max channel load
 – Analytical models for power (DSENT)

• Simulation-based analysis
 – Network-only simulation with synthetic traffic patterns
 – Full system simulation with real application benchmarks

• Hardware implementation
 – HDL implementation to measure power, area, frequency etc.

• Measurement on real hardware
 – Profiling and analyzing communication
Evaluating Topologies

• Important to consider traffic pattern

• Talked about system architecture impact on traffic

• If actual traffic pattern unknown
 – Synthetic traffic patterns
 • Evaluate common scenarios
 • Stress test network
 • Derive various properties of network
Traffic Patterns

• Historically derived from particular applications of interest
 – Spatial distribution
 – Matrix Transpose \rightarrow Transpose traffic pattern

• $d_i = s_{i+b/2} \mod b$

• b-bit address, d_i: ith bit of destination
Traffic Patterns Examples

- Fast Fourier Transform (FFT) or sorting application \rightarrow shuffle permutation
- Fluid dynamics \rightarrow neighbor patterns

Shuffle: $d_i = s_{i-1} \mod b$

Neighbor: $d_x = s_x + 1 \mod k$
Traffic Patterns (3)

• Uniform random
 – Each source equally likely to communication with each destination
 – Most commonly used traffic pattern
 • Very benign
 • Traffic is uniformly distributed
 – Balances load even if topology/routing algorithm has very poor load balancing
 – Need to be careful

 – But can be good for debugging/verifying implementation
 • Well-understood pattern
Stress-testing Network

• Uniform random can make bad topologies look good

• Permutation traffic will stress-test the network
 – Many types of permutation (ex: shuffle, transpose, neighbor)
 – Each source sends all traffic to single destination
 – Concentration of load on individual pairs
 • Stresses load balancing
Traffic Patterns

• For topology/routing discussion
 – Focus on spatial distribution

• Traffic patterns also have temporal aspects
 – Bursty behavior
 – Important to capture temporal behavior as well

• Motivate need for new traffic patterns
Full System Simulation

Full System Simulator

NoC Simulator

Packets Sent

Packets Arrived

Application

Processor

Cache

Disk

Other Components

NoC

Feedback!

Accurate But *Slow*
Trace Simulation

Trace Simulator

Trace

Packets Sent

NoC A

NoC B

Faster But *Less Accurate*

Fall 2014

ECE 1749H: Interconnection Networks (Enright Jerger)

25
Traffic Patterns

Synthetic Traffic Driver

<table>
<thead>
<tr>
<th>Traffic Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform Random</td>
</tr>
<tr>
<td>Bit Complement</td>
</tr>
<tr>
<td>Bit Reverse</td>
</tr>
<tr>
<td>Bit Rotation</td>
</tr>
<tr>
<td>Shuffle</td>
</tr>
<tr>
<td>Transpose</td>
</tr>
<tr>
<td>Tornado</td>
</tr>
<tr>
<td>Neighbour</td>
</tr>
</tbody>
</table>

NoC Simulator

Very Fast But *Inaccurate*
COMMON TOPOLOGIES
Types of Topologies

• Focus on switched topologies
 – Alternatives: bus and crossbar

 – Bus
 • Connects a set of components to a single shared channel
 • Effective broadcast medium

 – Crossbar
 • Directly connects n inputs to m outputs without intermediate stages
 • Fully connected, single hop network
 • Component of routers
Types of Topologies

• **Direct**
 – Each router is associated with a terminal node
 – All routers are sources and destinations of traffic

• **Indirect**
 – Routers are distinct from terminal nodes
 – Terminal nodes can source/sink traffic
 – Intermediate nodes switch traffic between terminal nodes

• To date: Most on-chip networks use direct topologies
Torus (1)

• K-ary n-cube: k^n network nodes
• N-Dimensional grid with k nodes in each dimension

3-ary 2-mesh

2,3,4-ary 3-mesh
Torus (2)

• Map well to planar substrate for on-chip

• Topologies in Torus Family
 – Ex: Ring -- k-ary 1-cube

• Edge Symmetric
 – Good for load balancing
 – Removing wrap-around links for mesh loses edge symmetry
 • More traffic concentrated on center channels

• Good path diversity

• Exploit locality for near-neighbor traffic
Hop Count

- Average shortest distance over all pairs of nodes

- Torus:
 - For uniform random traffic
 - Packet travels $k/4$ hops in each of n dimensions

 $$H_{\text{min}} = \begin{cases}
 \frac{nk}{4} & \text{k \; even} \\
 n \frac{k}{4} \frac{1}{4k} & \text{k \; odd}
 \end{cases}$$

- For uniform random traffic
 - Packet travels $k/4$ hops in each of n dimensions

- Mesh:
 $$H_{\text{min}} = \begin{cases}
 \frac{nk}{3} & \text{k \; even} \\
 n \frac{k}{3} \frac{1}{3k} & \text{k \; odd}
 \end{cases}$$
Torus (4)

• Degree = 2n, 2 channels per dimension
 – All nodes have same degree

• Total channels = 2nN
Channel Load for Torus

- Even number of k-ary (n-1)-cubes in outer dimension

- Dividing these k-ary (n-1)-cubes gives a 2 sets of k^{n-1} bidirectional channels or $4k^{n-1}$

- $\frac{1}{2}$ Traffic from each node cross bisection

 \[
 \text{channel load} = \frac{N}{2} \cdot \frac{k}{4N} = \frac{k}{8}
 \]

- Mesh has $\frac{1}{2}$ the bisection bandwidth of torus
Deriving Channel Load: 4-ary 2-cube

- Divide network in half
- Number of bisection channels
 - 8 links, bidirectional = 16 channels
 \[\frac{4N}{k} = \frac{4}{4} \cdot \frac{16}{4} \]
- \(\frac{1}{2}\) traffic crosses bisection
 \[\frac{N}{2} = 8 \]
- N/2 traffic distributed over 16 links
- Channel load = \(\frac{1}{2}\)
 - Loaded at twice injection bandwidth
Torus Path Diversity

\[|R_{xy}| = \binom{\Delta x + \Delta y}{\Delta x} \]

2 dimensions*

\(\Delta x = 2, \Delta y = 2 \)

\[|R_{xy}| = 6 \]

\[|R_{xy}| = 24 \quad \text{NW, NE, SW, SE combos} \]

2 edge and node disjoint minimum paths

*assume single direction for x and y
Mesh

• A torus with end-around connection removed

• Same node degree

• Bisection channels halved
 – Max channel load = k/4

• Higher demand for central channels
 – Load imbalance
Butterfly

• Indirect network

• K-ary n-fly: k^n network nodes

• Routing from 000 to 010
 – Dest address used to directly route packet
 – Bit n used to select output port at stage n
Butterfly (2)

- No path diversity \(|R_{xy}| = 1 \)
 - Can add extra stages for diversity
- Increase network diameter
Butterfly (3)

• Hop Count
 – \(\log_k N + 1 \)
 – Does **not** exploit **locality**
 • Hop count same regardless of location

• Switch Degree = 2k

• Requires long wires to implement
Butterfly: Channel Load

• $H_{min} \times N$: Channel demand
 – Number of channel traversals required to deliver one round of packets

• Channel Load \rightarrow uniform traffic
 – Equally loads channels

$$\frac{N H_{min}}{C} = \frac{k^n (n + 1)}{k^n (n + 1)} = 1$$

 – Increases for adversarial traffic
Butterfly: Deriving Channel Load

- Divide network in half
- Number of bisection channels: 4
- 4 nodes (top half) send $\frac{1}{2}$ traffic to lower half
 \[\frac{4}{2} = 2 \]
- Distributed across 2 channels (C)
- Channel load = 1
Butterfly: Channel Load

• Adversarial traffic
 – All traffic from top half sent to bottom half
 – E.g. 0 sends to 4, 1 sends to 5

• Channel load: 2
 – Loaded at ½ injection bandwidth
Clos Network

• 3-stage indirect network
 – Larger number of stages: built recursively by replacing middle stage with 3-stage Clos

• Characterized by triple (m, n, r)
 – M: # of middle stage switches
 – N: # of input/output ports on input/output switches
 – R: # of input/output switches

• Hop Count = 4
Clos Network
Clos Network

- Strictly non-blocking when $m > 2n-1$
 - Any input can connect to any unique output port

- $r \times n$ nodes

- Degree
 - First and last stages: $n + m$, middle stage: $2r$

- Path diversity: m

- Can be folded along middle switches
 - Input and output switches are shared
Folded Clos (Fat Tree)

- Bandwidth remains constant at each level
- Regular Tree: Bandwidth decreases closer to root
Fat Tree (2)

• Provides path diversity
Application of Topologies to On-Chip Networks

• FBFly
 – Convert butterfly to direct network
• Swizzle switch
 – Circuit-optimized crossbar
• Rings
 – Simple, low hardware cost
• Mesh networks
 – Several products/prototypes
• MECS and bus-based networks
 – Broadcast and multicast capabilities
Implementation

• Folding
 – Equalize path lengths
 • Reduces max link length
 • Increases length of other links
Concentration

- Don’t need 1:1 ratio of routers to cores
 - Ex: 4 cores concentrated to 1 router

- Can save area and power

- Increases network complexity
 - Concentrator must implement policy for sharing injection bandwidth
 - During bursty communication
 - Can bottleneck
Implication of Abstract Metrics on Implementation

• Degree: useful proxy for router complexity
 – Increasing ports requires additional buffer queues, requestors to allocators, ports to crossbar
 – All contribute to critical path delay, area and power

 – Link complexity does not correlate with degree
 • Link complexity depends on link width
 • Fixed number of wires, link complexity for 2-port vs 3-port is same
Implications (2)

• Hop Count: useful proxy for overall latency and power

 – Does not always correlate with latency
 • Depends heavily on router pipeline and link propagation

 – Example:
 • Network A with 2 hops, 5 stage pipeline, 4 cycle link traversal vs.
 • Network B with 3 hops, 1 stage pipeline, 1 cycle link traversal
Implications (2)

• Hop Count: useful proxy for overall latency and power

 – Does not always correlate with latency

 – Depends heavily on router pipeline and link propagation

 – Example:
 • Network A with 2 hops, 5 stage pipeline, 4 cycle link traversal vs.
 • Network B with 3 hops, 1 stage pipeline, 1 cycle link traversal

 Hop Count says A is better than B
 But A has 18 cycle latency vs 6 cycle latency for B
Implications (3)

• Topologies typically trade-off hop count and node degree

• Max channel load useful proxy for network saturation and max power
 – Higher max channel load \rightarrow greater network congestion
 – Traffic pattern impacts max channel load
 • Representative traffic patterns important
 – Max power: dynamic power is highest with peak switching activity and utilization in network
Topology Summary

• First network design decision

• Critical impact on network latency and throughput
 – Hop count provides first order approximation of message latency
 – Bottleneck channels determine saturation throughput