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Interconnection Networks:
Topology and Routing

Natalie Enrightlerger

Topology Overview

¢ Definition: determines arrangement of
channels and nodes in network

¢ Analogous to road map
 Often first step in network design

¢ Routing and flow control build on properties
of topology

Abstract Metrics

¢ Use metrics to evaluate performance and cost of
topology
 Also influenced by routing/flow control

— At this stage
* Assume ideal routing (perfect load balancing)
* Assume ideal flow control (no idle cycles on any channel)

* Switch Degree: number of links at a node

— Proxy for estimating cost
* Higher degree requires more links and port counts at each
router

Latency

¢ Time for packet to traverse network
— Start: head arrives at input port
— End: tail departs output port
¢ Latency = Head latency + serialization latency
— Serialization latency: time for packet with Length L to
cross channel with bandwidth b (L/b)
¢ Hop Count: the number of links traversed
between source and destination
— Proxy for network latency
— Per hop latency with zero load

Impact of Topology on Latency

¢ Impacts average minimum hop count
¢ Impact average distance between routers
¢ Bandwidth

Throughput

¢ Data rate (bits/sec) that the network accepts
per input port

¢ Max throughput occurs when one channel
saturates
— Network cannot accept any more traffic

* Channel Load

— Amount of traffic through channel c if each input
node injects 1 packet in the network




Maximum channel load

¢ Channel with largest fraction of traffic

¢ Max throughput for network occurs when
channel saturates

— Bottleneck channel
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Bisection Bandwidth

¢ Cuts partition all the nodes into two disjoint sets
— Bandwidth of a cut

* Bisection
— A cut which divides all nodes into nearly half

— Channel bisection = min. channel count over all
bisections

— Bisection bandwidth > min. bandwidth over all
bisections

¢ With uniform traffic
— % of traffic cross bisection

Throughput Example

¢ Bisection =4 (2 in each direction)
¢ With uniform random traffic
— 3sends 1/8 of its traffic to 4,5,6
— 3 sends 1/16 of its traffic to 7 (2 possible shortest paths)
— 2sends 1/8 of its traffic to 4,5
— Etc

e Channelload=1

Path Diversity

¢ Multiple minimum length paths between
source and destination pair

¢ Fault tolerance

* Better load balancing in network

* Routing algorithm should be able to exploit
path diversity

¢ We'll see shortly
— Butterfly has no path diversity
— Torus can exploit path diversity

Path Diversity (2)

¢ Edge disjoint paths: no links in common

¢ Node disjoint paths: no nodes in common
except source and destination

¢ If j = minimum number of edge/node disjoint
paths between any source-destination pair
— Network can tolerate j link/node failures

Symmetry

¢ Vertex symmetric:

— An automorphism exists that maps any node
a onto another node b

— Topology same from point of view of all nodes
¢ Edge symmetric:

— An automorphism exists that maps any channel a
onto another channel b




Direct & Indirect Networks

Direct: Every switch also network end point
— Ex: Torus

Indirect: Not all switches are end points

— Ex: Butterfly
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Torus (1)

¢ K-ary n-cube: k"network nodes
¢ n-dimensional grid with k nodes in each

Torus (2)

Topologies in Torus Family
— Ring k-ary 1-cube .
— Hypercubes 2-ary n-cube
Edge Symmetric
— Good for load balancing
— Removing wrap-around links for mesh loses edge

symmetry
* More traffic concentrated on center channels

Good path diversity
Exploit locality for near-neighbor traffic

dimension
3-ary 2-oudsh 2,3,4-ary 3-mesh
Torus (3)
% k even
H min =
n [h - ij k odd
4K
* Hop Count:

* Degree = 2n, 2 channels per dimension

Channel Load for Torus

Even number of k-ary (n-1)-cubes in outer
dimension

Dividing these k-ary (n-1)-cubes gives a 2 sets
of k"1 bidirectional channels or 4k™1
% Traffic from each node cross bisection

N k k

channelload = —x—=—
2 4N 8

Mesh has % the bisection bandwidth of torus

Torus Path Diversity
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Implementation Concentration

* Folding ¢ Don’t need 1:1 ratio of network nodes and
— Equalize path lengths b—@—@—d cores/memory
e Ex: 4 cores concentrated to 1 router

* Reduces max link

length 3
 Increases length of 4 PN
: \ 4

other links

T T

Butterfly Butterfly (2)
o K-ary n-fly: kn * No path diversity ‘ny =1
network nodes * Hop Count
* Example: 2-ary 3-fly —login+1

— Does not exploit locality
* Hop count same regardless of location

¢ Switch Degree = 2k
¢ Channel Load = uniform traffic
NH k"(n+1)
Cmm — . :1
k"(n+1)

— Increases for adversarial traffic

¢ Routing from 000 to
010

— Dest address used to

directly route packet

— Bit n used to select
output port at stage n

Flattened Butterfly Flattened Butterfly
¢ Proposed by Kim et al (ISCA 2007) = =3 =
— Adapted for on-chip (MICRO 2007) X oM % PX
. Advanta.ges > s —>
— Max distance between nodes = 2 hops € >
— Lower latency and improved throughput compared to b b AN
mesh > — €3 >
* Disadvantages —S
— Requires higher port count on switches (than mesh, [ [ [ [
torus) = <=3 <>
— Long global wires >
— Need non-minimal routing to balance load
¢ Path diversity through non-minimal routes
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Clos Network

¢ 3-stage indirect network
¢ Characterized by triple (m, n, r)
— M: # of middle stage switches

— N: # of input/output ports on input/output
switches

— R: # of input/output switching
* Hop Count=4

Folded Clos (Fat Tree)

* Bandwidth remains constant at each level
* Regular Tree: Bandwidth decreases closer to root

Fat Tree (2)
e e o o
« 6 @ 9

A

¢ Provides path diversity

Common On-Chip Topologies

¢ Torus family: mesh, concentrated mesh, ring
— Extending to 3D stacked architectures
— Favored for low port count switches

¢ Butterfly family: Flattened butterfly

Topology Summary

¢ First network design decision
e Critical impact on network latency and
throughput

— Hop count provides first order approximation of
message latency

— Bottleneck channels determine saturation
throughput




Routing Overview

Discussion of topologies assumed ideal
routing

Practically though routing algorithms are not
ideal

Discuss various classes of routing algorithms
— Deterministic, Oblivious, Adaptive

Various implementation issues

— Deadlock
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Routing Basics

¢ Once topology is fixed

¢ Routing algorithm determines path(s) from
source to destination

@

Routing Algorithm Attributes

Number of destinations

— Unicast, Multicast, Broadcast?

Adaptivity

— Oblivious or Adaptive? Local or Global
knowledge?

Implementation
— Source or node routing?
— Table or circuit?

Oblivious

* Routing decisions are made without regard to
network state
— Keeps algorithms simple
— Unable to adapt

¢ Deterministic algorithms are a subset of
oblivious

Deterministic

All messages from Src to Dest will traverse the same
path

Common example: Dimension Order Routing (DOR)
— Message traverses network dimension by dimension
— Aka XY routing

Cons:

— Eliminates any path diversity provided by topology

— Poor load balancing

Pros:

— Simple and inexpensive to implement

— Deadlock free

Valiant’s Routing Algorithm

¢ To route from s to d,
randomly choose
intermediate node d’
— Route from s to d’ and

fromd’ to d.

* Randomizes any traffic

pattern

— All patterns appear to be
uniform random

— Balances network load
¢ Non-minimal




Minimal Oblivious

* Valiant’s: Load balancing
comes at expense of
significant hop count
increase
— Destroys locality

¢ Minimal Oblivious:
achieve some load
balancing, but use
shortest paths
— d’ must lie within

minimum quadrant
— 6 options for d’ L
— Only 3 different paths
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Adaptive

* Uses network state to make routing decisions
— Buffer occupancies often used
— Couple with flow control mechanism
¢ Local information readily available
— Global information more costly to obtain
— Network state can change rapidly

— Use of local information can lead to non-optimal
choices

Can be minimal or non-minimal

Minimal Adaptive Routing

¢ Local info can result in sub-optimal choices

Non-minimal adaptive

¢ Fully adaptive
* Not restricted to take shortest path
— Example: FBfly
¢ Misrouting: directing packet along non-
productive channel
— Priority given to productive output
— Some algorithms forbid U-turns

¢ Livelock potential: traversing network without
ever reaching destination

— Mechanism to guarantee forward progress
¢ Limit number of misroutings

Non-minimal routing example

¢ Longer path with potentially ¢ Livelock: continue routing in
lower latency cycle

Routing Deadlock

* Without routing restrictions, a resource cycle
can occur

— Leads to deadlock




Turn Model Routing
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Negative first

¢ Some adaptivity by removing 2 of 8 turns
— Remains deadlock free (like DOR)
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Turn Model Routing Deadlock
PWFJIML:}
_— LJ

¢ Not a valid turn elimination
— Resource cycle results

Routing Implementation

* Source tables

— Entire route specified at source

— Avoids per-hop routing latency

— Unable to adapt to network conditions

— Can specify multiple routes per destination
* Node tables

— Store only next routes at each node

— Smaller tables than source routing

— Adds per-hop routing latency

— Can adapt to network conditions
* Specify multiple possible outputs per destination

Implementation

¢ Combinational circuits can be used
— Simple (e.g. DOR): low router overhead
— Specific to one topology and one routing
algorithm
e Limits fault tolerance
¢ Tables can be updated to reflect new
configuration, network faults, etc

Circuit Based
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Routing Summary

e Latency paramount concern
— Minimal routing most common for NoC

— Non-minimal can avoid congestion and deliver low
latency

¢ To date: NoC research favors DOR for simplicity
and deadlock freedom
— On-chip networks often lightly loaded

¢ Only covered unicast routing

— Recent work on extending on-chip routing to support
multicast
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