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Cache Coherence

● Atomicity used to be default - interconnect optimizations meant blocking 
buses were not favored

● Split transitions and races now occur 
○ Low performance impact
○ High contribution to design impact

● Race Events are unexpected interruptions
○ Hard to find them all, hard to simulate - heavy traffic workloads might not even find them
○ Therefore, verification is difficult
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Solution

● Simplify objects to simplify verification 
○ Back to atomic protocols
○ Atomic interconnects are unlikely

● Remove races by implementing mutexes
● D. Vantrease claims only 2% performance overhead over state of the art 

MOEFSI protocol



Our Project

● Atomic Cache Coherence MESI protocol in gem5
● PushS in gem5
● Parallel Neural Network to run on gem5



Atomic Coherence Implementation

● Definition: if, for any block, every transition from one stable coherence state 
to another stable coherence state occurs atomically with respect to all other 
stable transitions for that block.

● Atomic substrate: enforcing that only one stable-to-stable transaction to a 
memory block may be in progress at a time, dedicated to resolving races.

● Coherence  substrate: enforcing contracts for block permission and 
sometimes data.



Atomic Coherence with Mutexes

● In L1 Cache
○ Lock mutex when transitioning from stable states
○ Unlock mutex when transitioning to stable states

● Atomic CResp:
○ Locked  until all control responses received and processed.

● Atomic DResp:
○ Locked  until all control AND data responses received and processed.



Mutex in Gem5

● Array of mutexes
○ Implemented in C++
○ Varying amounts of mutexes
○ Connected as a SimObject to L1 Cache

● Pros
○ Reduces state transitions
○ Race free

● Cons
○ Latency of mutex lock and unlock
○ Serialization of some requests



SLICC Implementation

● SLICC is the language used by gem5 to implement a cache coherence state 
machine

Layout of a SLICC transition:

transition(S, Store, M){
Grab_mutex;
… 

}

Current State,   Event,     Next State

Actions to be 
taken



PushS
Basic Principles of PushS:

○ While controlling a lock you can perform any coherence updates you want
○ The list of sharers on an address are a good indication of the list of sharers 

on the address after it has been modified  

How it Works

● When a cache block in Shared(S) transitions to Modified(M) keep the old sharers 
list

● When that same block is read, M->S, use the old sharers list to push the data 
into the caches of all the old sharers and update their coherence states



PushS
<1,1,1,0,1> (C0-C2 are sharing)

<1,0,0,0,0> (C0 is modified) → keep the old sharers list <C0,C1,C2>

(C2 tries to read the block and acquires the lock)

1. Use the old sharers list to push the data into <C1,C2>
2. After the last cache has completed the mutex is unlocked

<1,1,1,0,1> 



PushS
Pro:

● If there is a lot of sharing between caches PushS can quickly restore 
data to all caches after one cache has modified the data

Con:

● This is still a prediction and therefore could evict useful data in the cache 
with useless data



Neural Network Design

1. Interested in training rather than Inference
2. Tiling the neural network processing

a. Maximize cache residency
b. For feed-forward and backpropagation

3. Will have the most performance impact on convolution 
layer due to sharing of parameters

Image from: http://cs231n.github.io/convolutional-networks/



Limitation

● Full blown networks like AlexNet require environments like TensorFlow or 
Caffe

○ High time cost

● Implemented a 3 layer MLP neural network instead and manipulated the 
loop structure

○ Only need a small amount to capture the memory traffic of the system
○ Implemented in C with OpenMP



Further Work

1. MOESI Implementation
2. Add additional optimizations - ShiftF 
3. Export TensorFlow python to a C++ file

a. Hard to parallelize
b. Less freedom to tile

4. Implement more neural network types like LSTMs/RNNs and compare the 
performance



Summary

● Removal of race and split transitions by use of mutexes
● Use of PushS to offset mutex overhead

○ Neural Networks can gain large benefits from this

● All this implemented in the gem5 environment with C++ SimObjects and 
SLICC



Questions?
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