Profiling the Performance of
Binarized Neural Networks

Daniel Lerner, Jared Pierce, Blake Wetherton, Jialiang Zhang

Outline

Project Significance

Prior Work

Research Objectives

Hypotheses

Testing Framework

Results

Conclusions and (Hypothetical) Future Work

Project Significance

Applications | edit]

Applications for machine learning include:

Adaptive websites

Affective computing
Bioinformatics
Brain-machine interfaces
Cheminformatics
Classifying DMNA sequences
Computational anatomy
Computer vision, including object recognition
Detecting credit card fraud
Game playing

Information retrieval
Internet fraud detection
Marketing

Machine learning control
Machine perception
Medical diagnosis

Economics

Matural language processing
Matural language understanding
Optimization and metaheuristic
Online adwvertising

Fecommender systems

Fobot locomotion

Search engines

Sentiment analysis (or opinion mining)
Sequence mining

Software engineering

Speech and handwriting recognition
Financial market analysis

Structural health monitoring
Syntactic pattern recognition

User behavior analytics

Translation(38]

Binarization

e Assigns weights of +1, -1
o Turns multiply-accumulates into accumulates
o Better when done stochastically

e More energy efficient
o Datacenters power and cooling limited
e Faster inference phase
o Lower latency in commercial applications

e Could be important moving to low-power/mobile platforms

Prior Work

Intel Paper: Hardware Acceleration of BNNs

Compared standard neural networks with their binarized counterparts on a

variety of hardware platforms
o FPGA, CPU, GPU, ASIC

Applies two optimizations for CPU and GPU: Binarizing and Batching

o Batches of size 10
Focuses on the classification or inference stage

Batching stays small to avoid latency (commercial applications)
o GPU limited by this

Binarize

o CPU 5x faster

o GPU 11x faster
Batching (size 10)

o CPU 80% faster

o GPU 5.8x faster
Binarize + Batch

o GPU, ASIC fastest

o ASIC, FPGA most efficient

o High throughput, latency
CPU, GPU Utilization

o Poor without batching

mCPU mCPU (b10) m CPU binarized ® CPU binarized (b10) = GPU
5 = GPU (B10) B GPU binarized GPU binarized (b10) B mGPU B mGPU binarized
15 " FPGAG4 W FPGAL1024 mASICE4 " ASIC256
...... D T et
£ 1000 - +
5 | | |
] 100 | ;
g 1.0 | - |
s
g o1 . . |
T 00+ —] — . -
e Alex/VGG 7 Alex/VGG 8 NT-We NT-wd NTLSTM Avg
Fig. 6. Performance relative to baseline software on CPU. Le . above | means speedup, while less than 1 means slowdown
= CPU mCPU (b10) m CPU binarized ® CPU binarized (b10) = GPU
= GPU (B10) B GPU binarized GPU binarized (b10) ®mGPU ® mGPU binarized
FPGAB4 ™ FPGA1024 | ASIC64 W ASIC256
10,000
§ 1,000
T 100
£
£ 10 +
£
&
0

Alex/VGG 7 Alex/VGG 8 NT-We NT-Wd NTLSTM Avg

Fig. 7. Performance/Watt relative to baseline software on CPU

mCPU ECPU (b10) B CPU binarized ® CPU binarized (b10) HGPU
= GPU (B10) = GPU binarized GPU binarized (b10) = mGPU m mGPU binarized
FPGAG4 mFPGAL024 m ASICE4 mASIC256
'é
%5 1%
i3
=
=3
&

Alex/VGG 7 Alex/VGG 8 NT-We NT-wd NTLSTM

Fig 8 Achieved performance relative to peak. E g, 50% means only half of peak performance is realized.

Courbariaux: BinaryConnect Summary

e Introduces BinaryConnect method for training DNN with binary weights during
forward and backward propagation

Retain precisions of weights on which gradients are calculated

Binarization acts as a regularizer

Near state-of-the art accuracies achieved

Both deterministic and stochastic binarization are implemented

Courbariaux: BinaryConnect

TRAINING CURVES

W 25.00%
\\
e i 20.00%
N & | q
NS ~_ \‘
s = y 15.00%
N \\) ’ L~‘
",
e N e seamtn o e v 10.00%
", b
\s‘\ ~
N
R 5.00%
'\L - \\
_____ S SECEEESN SSRGS PSSRt I T), -
50 100 150 200 250 300 350 400 450 500
EPOCH
— —STOCHASTIC BINARYCONNECT — —NOREGULARIZER — — DETERMINISTIC BINARYCONNECT

VALIDATION ERROR RATE (%)

10

-1.25

-1

WEIGHTS HISTOGRAM = F(REGULARIZER)

-0.75 -0.5 -0.25 0
W

—DETERMINISTIC BINARYCONNECT

0.25 0.5 0.75 1 1.25

—STOCHASTIC BINARYCONNECT

11

Matthieu Courbariaux: BinaryNet

e Introduces methods for training BNNs (weights and activations)

e Shows that BNNs are approximately as accurate as state-of-the-art DNNs

e Shows BNNs reduce memory usage and allow for bitwise operations, with the
potential to reduce power consumption

e Implements a binary matrix multiplication GPU kernel for ~7x speedup

CIFAR-10 TRAINING CURVES

25.00%

20.00%

15.00%

10.00%

5.00%

VALIDATION ERROR RATE (%)

0 100 200 300 400 500

EPOCH 12
— —BASELINE— —BNN (THEANO) — —BNN (TORCH7) +

Objectives and Hypotheses

Obijectives

Recreate Intel’s results, test Courbariaux’s work

Run a BNN on a CPU, GPU, and FPGA

Test three differently sized datasets: MNIST, CIFAR-10, SVHN

Measure performance, power consumption, and resource utilization

Test the effects of batching

Draw some conclusions for various applications of neural networks running on
different hardware platforms

14

Hypotheses

FPGA will be superior in terms of power consumption and resource utilization
At small (~1) batch sizes, FPGA will outperform the others

With larger batches, GPU will perform best

Performance will scale nonlinearly with the size of dataset

Relative performance of the three datasets will be comparable

15

Testing Framework

Testing Framework

e \Workload: BinaryConnect
o Python scripts
o Uses Theano for matrix operations

e Hardware: Intel i7 5960k, Nvidia GTX Titan X, and FPSoC (28nm XC7Z020)
e Metrics: Performance, Power, Resource Utilization
e Kill A Watt power meter

17

Testing Framework

e Performance
o Measure run time for training datasets of MNIST, SVHN, and CIFAR-10 for each system
o If dataset too large to run to completion, record epoch training times and extrapolate
e Power Consumption
o Use a wall outlet power meter on the computer
o Record total energy used in training session (k\Wh)
o Subtract off an idle system energy (extrapolated from measured idle time consumption)
o FPGA has its own hardware
e Resource Ultilization
o Linux command ‘top’ for CPU, ‘nvidia-smi’ for GPU
o Whatever the FPGA does

18

28000
24000

< 20000

= =
Pd lap}
8 8
= =

Time per Epoch
&
S

S
S

=]

CPU Performance

23,212

3,635

10
Batch Size

1,510

19

CPU Power Consumption

=< 150
= 136.5
&

= 116.3 112.7
o

2 100

| -

R,

o

QL

]

(Fy]

_3

< 50

<

| -

Q

=

o

(o

Qo 0

-

< 1 10 50

Batch Size

=3 3000
=
.
o 2500
O
Lid
@ 2000
(w]
)
o 1500
[Fa]
=
85 1000
|
Q@
[
W 500
Q@
=

0

2,699.8

CPU Energy

409.7

10

Batch Size

206.1

50

21

CPU Results

e The CPU is slow for training the BNN
o The MNIST dataset takes ~18 hours
o This makes CIFAR-10 and SVHN prohibitively large for our timeframe
o We can take data several epochs in and extrapolate
e Power Usage
o Higher with batching
e Utilization
o 75% when running CIFAR-10 (6 out of 8 cores utilized)
o i7 more appropriate for workload than Xeon

22

500
400
0
£
U
O 300
o
Ll
| .
b
Q. 200
a
E
e 100
0

GPU Performance

435.8

71.6

1 10
Batch Size

50

23

oy
o
o

200

j=a
-
o

Ave. Power Adjusted for Idle Use (W)
=

GPU Power Consumption

176.5

256.5

10
Batch Size

249.8

50

24

GPU Energy

]
S
(r

11.2
50

18.4
10
Batch Size

76.9

I..l.._

5 3 & S ®

) yood3j iad a8esn ASiau] ‘any

25

Percent Utilized

100

90

70

GPU Utilization

10
Batch Size

96

50

26

GPU Results

e GPU is faster than reported in BinaryConnect Repository
o This could be a result of batching

e Power Consumption is heavy

o Large batches more efficient than small batches due to performance

o After a certain batch size, power consumption flattens out to maximum
e Resource Utilization is better than expected

o Gets better with larger batches
o >70% even on batch size 1

27

BNN Implementation on FPGA

e Target embedded FPSoC (28nm XC72020)
o 53k LUTs, 106k FFs, 140 BRAMs, 220 DSPs

e Stores all feature maps on-chip
o 4.9Mb of on-chip storage available
o Used trained network from Theano

e Use Xilinx HLS to generate RTL from C source

Architecture of FPGA BNN Accelerator

Data Buffer Compute Unit
Convolvers
- ol Line T [
»| Bank 1 el [REEH s | -
f_out
v . »>feature
Host — | pmA e s fin . Pooling map
fin : : @—» Buffer » Bnorm _
Binarize o
Line @ il e
> bank f_in > Buffer = //; ,
_out

* TwWo main components:
 Data buffer and Compute Units

«f_in is the input parallelization factor
f_out is the output parallelization factor

29

Experimental Results

* Fixed f out= 1 to find the trade-off between f in and f_out
« LUT and FFs usage scaled with number of Convolvers
« BRAM and DSPs generally insensitive to f_in
* Runtime weakly scales with number of Convolvers

« Consumes 5W atf in=8

f_in LUT FF BRAM DSP RUNTIME
1 25859 28187 B 3 17.5ms
2 35281 37125 87 3 10.8ms
4 38806 36771 87 3 7.898ms
8 45800 46134 B4 3 5.84ms

Comparing Hardware Platforms

Batch Size

1

10

50

Batch Size

1

10

50

CPU
Performance (s/epoch) Energy Usage (kJ/epoch)
23212 2699.80
3635 409.74
1510 206.12
GPU
Performance (s/epoch) Energy Usage (kJ/epoch)
435.8 76.92
71.6 18.37
44.8 12.11

Average Power (W)
116.31
112.72

136.5

Average Power (W)
176.5
256.5

249.81

31

Preliminary Results

GPU is clearly superior to CPU in all but instantaneous power draw
Batching helps performance and energy efficiency, but sub-linearly
Batching increases power draw and resource utilization sub-linearly
It is not immediately clear how GPU and CPU compare to FPGA, but we

anticipate the power usage, at a minimum, will be far superior for the FPGA.

32

Conclusions and Hypothetical Future Work

Hardware can improve performance of BNNs immensely
Implement ASIC

Better Power Measurement

More direct comparison with standard CNNs in inference mode

33

References

Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. "Binarized neural networks: Training
deep neural networks with weights and activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "BinaryConnect: Training deep neural networks with binary
weights during propagations." In Advances in Neural Information Processing Systems, pp. 3123-3131. 2015.

Nurvitadhi, Eriko, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie Marr. "Accelerating
Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC." Proc. ICFPT (2016).

Zhang, Jialiang, and Jing Li. "Improving the Performance of OpenCL-based FPGA Accelerator for Convolutional Neural
Network." In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
25-34. ACM, 2017.

34

