
Profiling the Performance of 
Binarized Neural Networks

Daniel Lerner, Jared Pierce, Blake Wetherton, Jialiang Zhang

1



Outline
● Project Significance
● Prior Work
● Research Objectives
● Hypotheses
● Testing Framework
● Results
● Conclusions and (Hypothetical) Future Work

2



Project Significance

3



4



Binarization
● Assigns weights of +1, -1

○ Turns multiply-accumulates into accumulates
○ Better when done stochastically

● More energy efficient
○ Datacenters power and cooling limited

● Faster inference phase
○ Lower latency in commercial applications

● Could be important moving to low-power/mobile platforms

5



Prior Work

6



Intel Paper: Hardware Acceleration of BNNs
● Compared standard neural networks with their binarized counterparts on a 

variety of hardware platforms
○ FPGA, CPU, GPU, ASIC

● Applies two optimizations for CPU and GPU: Binarizing and Batching
○ Batches of size 10

● Focuses on the classification or inference stage
● Batching stays small to avoid latency (commercial applications)

○ GPU limited by this

7



● Binarize
○ CPU 5x faster
○ GPU 11x faster

● Batching (size 10)
○ CPU 80% faster 
○ GPU 5.8x faster 

● Binarize + Batch
○ GPU, ASIC fastest
○ ASIC, FPGA most efficient
○ High throughput, latency

● CPU, GPU Utilization
○ Poor without batching

8



Courbariaux: BinaryConnect Summary
● Introduces BinaryConnect method for training DNN with binary weights during 

forward and backward propagation
● Retain precisions of weights on which gradients are calculated
● Binarization acts as a regularizer
● Near state-of-the art accuracies achieved
● Both deterministic and stochastic binarization are implemented

9



Courbariaux: BinaryConnect

10



11



Matthieu Courbariaux: BinaryNet
● Introduces methods for training BNNs (weights and activations)
● Shows that BNNs are approximately as accurate as state-of-the-art DNNs
● Shows BNNs reduce memory usage and allow for bitwise operations, with the 

potential to reduce power consumption
● Implements a binary matrix multiplication GPU kernel for ~7x speedup

12



Objectives and Hypotheses

13



Objectives
● Recreate Intel’s results, test Courbariaux’s work
● Run a BNN on a CPU, GPU, and FPGA
● Test three differently sized datasets: MNIST, CIFAR-10, SVHN
● Measure performance, power consumption, and resource utilization
● Test the effects of batching
● Draw some conclusions for various applications of neural networks running on 

different hardware platforms

14



Hypotheses
● FPGA will be superior in terms of power consumption and resource utilization
● At small (~1) batch sizes, FPGA will outperform the others
● With larger batches, GPU will perform best
● Performance will scale nonlinearly with the size of dataset
● Relative performance of the three datasets will be comparable

15



Testing Framework

16



Testing Framework
● Workload: BinaryConnect

○ Python scripts 
○ Uses Theano for matrix operations

● Hardware: Intel i7 5960k, Nvidia GTX Titan X, and FPSoC (28nm XC7Z020)
● Metrics: Performance, Power, Resource Utilization
● Kill A Watt power meter

17



Testing Framework
● Performance

○ Measure run time for training datasets of MNIST, SVHN, and CIFAR-10 for each system
○ If dataset too large to run to completion, record epoch training times and extrapolate

● Power Consumption
○ Use a wall outlet power meter on the computer
○ Record total energy used in training session (kWh)
○ Subtract off an idle system energy (extrapolated from measured idle time consumption)
○ FPGA has its own hardware

● Resource Utilization
○ Linux command ‘top’ for CPU, ‘nvidia-smi’ for GPU
○ Whatever the FPGA does

18



19



20



21



CPU Results
● The CPU is slow for training the BNN

○ The MNIST dataset takes ~18 hours
○ This makes CIFAR-10 and SVHN prohibitively large for our timeframe
○ We can take data several epochs in and extrapolate

● Power Usage
○ Higher with batching

● Utilization
○ 75% when running CIFAR-10 (6 out of 8 cores utilized)
○ i7 more appropriate for workload than Xeon

22



23



24



25



26



GPU Results
● GPU is faster than reported in BinaryConnect Repository

○ This could be a result of batching

● Power Consumption is heavy
○ Large batches more efficient than small batches due to performance
○ After a certain batch size, power consumption flattens out to maximum

● Resource Utilization is better than expected
○ Gets better with larger batches
○ >70% even on batch size 1

27



BNN Implementation on FPGA

● Target embedded FPSoC (28nm XC7Z020)
○ 53k LUTs, 106k FFs, 140 BRAMs, 220 DSPs

● Stores all feature maps on-chip
○ 4.9Mb of on-chip storage available
○ Used trained network from Theano

● Use Xilinx HLS to generate RTL from C source



Architecture of FPGA BNN Accelerator

• Two main components: 
• Data buffer and Compute Units

• f_in is the input parallelization factor
• f_out is the output parallelization factor



Experimental Results
• Fixed f_out= 1 to find the trade-off between f_in and f_out

• LUT and FFs usage scaled with number of Convolvers
• BRAM and DSPs generally insensitive to f_in
• Runtime weakly scales with number of Convolvers 

• Consumes 5W at f_in=8



Comparing Hardware Platforms

Batch Size Performance (s/epoch) Energy Usage (kJ/epoch) Average Power (W)

1 23212 2699.80 116.31

10 3635 409.74 112.72

50 1510 206.12 136.5

Batch Size Performance (s/epoch) Energy Usage (kJ/epoch) Average Power (W)

1 435.8 76.92 176.5

10 71.6 18.37 256.5

50 44.8 12.11 249.81

CPU

GPU

31



Preliminary Results
● GPU is clearly superior to CPU in all but instantaneous power draw
● Batching helps performance and energy efficiency, but sub-linearly
● Batching increases power draw and resource utilization sub-linearly
● It is not immediately clear how GPU and CPU compare to FPGA, but we 

anticipate the power usage, at a minimum, will be far superior for the FPGA.

32



Conclusions and Hypothetical Future Work
● Hardware can improve performance of BNNs immensely
● Implement ASIC
● Better Power Measurement
● More direct comparison with standard CNNs in inference mode

33



References
Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. "Binarized neural networks: Training 
deep neural networks with weights and activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "BinaryConnect: Training deep neural networks with binary 
weights during propagations." In Advances in Neural Information Processing Systems, pp. 3123-3131. 2015.

Nurvitadhi, Eriko, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie Marr. "Accelerating 
Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC." Proc. ICFPT (2016).

Zhang, Jialiang, and Jing Li. "Improving the Performance of OpenCL-based FPGA Accelerator for Convolutional Neural 
Network." In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 
25-34. ACM, 2017.

34


