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Project Significance



Applications | edit]

Applications for machine learning include:

Adaptive websites

Affective computing
Bioinformatics
Brain-machine interfaces
Cheminformatics
Classifying DMNA sequences
Computational anatomy
Computer vision, including object recognition
Detecting credit card fraud
Game playing

Information retrieval
Internet fraud detection
Marketing

Machine learning control
Machine perception
Medical diagnosis

Economics

Matural language processing
Matural language understanding
Optimization and metaheuristic
Online adwvertising

Fecommender systems

Fobot locomotion

Search engines

Sentiment analysis (or opinion mining)
Sequence mining

Software engineering

Speech and handwriting recognition
Financial market analysis

Structural health monitoring
Syntactic pattern recognition

User behavior analytics
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Binarization

e Assigns weights of +1, -1
o  Turns multiply-accumulates into accumulates
o Better when done stochastically

e More energy efficient
o Datacenters power and cooling limited
e Faster inference phase
o Lower latency in commercial applications

e Could be important moving to low-power/mobile platforms



Prior Work



Intel Paper: Hardware Acceleration of BNNs

Compared standard neural networks with their binarized counterparts on a

variety of hardware platforms
o FPGA, CPU, GPU, ASIC

Applies two optimizations for CPU and GPU: Binarizing and Batching

o Batches of size 10
Focuses on the classification or inference stage

Batching stays small to avoid latency (commercial applications)
o GPU limited by this



Binarize

o CPU 5x faster

o GPU 11x faster
Batching (size 10)

o CPU 80% faster

o GPU 5.8x faster
Binarize + Batch

o GPU, ASIC fastest

o ASIC, FPGA most efficient

o High throughput, latency
CPU, GPU Utilization

o Poor without batching
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Courbariaux: BinaryConnect Summary

e Introduces BinaryConnect method for training DNN with binary weights during
forward and backward propagation

Retain precisions of weights on which gradients are calculated

Binarization acts as a regularizer

Near state-of-the art accuracies achieved

Both deterministic and stochastic binarization are implemented



Courbariaux: BinaryConnect
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Matthieu Courbariaux: BinaryNet

e Introduces methods for training BNNs (weights and activations)

e Shows that BNNs are approximately as accurate as state-of-the-art DNNs

e Shows BNNs reduce memory usage and allow for bitwise operations, with the
potential to reduce power consumption

e Implements a binary matrix multiplication GPU kernel for ~7x speedup

CIFAR-10 TRAINING CURVES

25.00%

20.00%

15.00%

10.00%

5.00%

VALIDATION ERROR RATE (%)

0 100 200 300 400 500

EPOCH 12
— —BASELINE— —BNN (THEANO) — —BNN (TORCH7) +



Objectives and Hypotheses



Obijectives

Recreate Intel’s results, test Courbariaux’s work

Run a BNN on a CPU, GPU, and FPGA

Test three differently sized datasets: MNIST, CIFAR-10, SVHN

Measure performance, power consumption, and resource utilization

Test the effects of batching

Draw some conclusions for various applications of neural networks running on
different hardware platforms
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Hypotheses

FPGA will be superior in terms of power consumption and resource utilization
At small (~1) batch sizes, FPGA will outperform the others

With larger batches, GPU will perform best

Performance will scale nonlinearly with the size of dataset

Relative performance of the three datasets will be comparable
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Testing Framework



Testing Framework

e \Workload: BinaryConnect
o  Python scripts
o Uses Theano for matrix operations

e Hardware: Intel i7 5960k, Nvidia GTX Titan X, and FPSoC (28nm XC7Z020)
e Metrics: Performance, Power, Resource Utilization
e Kill A Watt power meter
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Testing Framework

e Performance
o Measure run time for training datasets of MNIST, SVHN, and CIFAR-10 for each system
o If dataset too large to run to completion, record epoch training times and extrapolate
e Power Consumption
o Use a wall outlet power meter on the computer
o Record total energy used in training session (k\Wh)
o Subtract off an idle system energy (extrapolated from measured idle time consumption)
o FPGA has its own hardware
e Resource Ultilization
o Linux command ‘top’ for CPU, ‘nvidia-smi’ for GPU
o  Whatever the FPGA does
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CPU Power Consumption
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CPU Results

e The CPU is slow for training the BNN
o The MNIST dataset takes ~18 hours
o This makes CIFAR-10 and SVHN prohibitively large for our timeframe
o We can take data several epochs in and extrapolate
e Power Usage
o Higher with batching
e Utilization
o 75% when running CIFAR-10 (6 out of 8 cores utilized)
o i7 more appropriate for workload than Xeon
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GPU Energy
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GPU Results

e GPU is faster than reported in BinaryConnect Repository
o This could be a result of batching

e Power Consumption is heavy

o Large batches more efficient than small batches due to performance

o After a certain batch size, power consumption flattens out to maximum
e Resource Utilization is better than expected

o Gets better with larger batches
o >70% even on batch size 1
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BNN Implementation on FPGA

e Target embedded FPSoC (28nm XC72020)
o 53k LUTs, 106k FFs, 140 BRAMs, 220 DSPs

e Stores all feature maps on-chip
o 4.9Mb of on-chip storage available
o Used trained network from Theano

e Use Xilinx HLS to generate RTL from C source



Architecture of FPGA BNN Accelerator
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* TwWo main components:
 Data buffer and Compute Units

«f_in is the input parallelization factor
f_out is the output parallelization factor
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Experimental Results

* Fixed f out= 1 to find the trade-off between f in and f_out
« LUT and FFs usage scaled with number of Convolvers
« BRAM and DSPs generally insensitive to f_in
* Runtime weakly scales with number of Convolvers

« Consumes 5W atf in=8

f_in LUT FF BRAM DSP RUNTIME
1 25859 28187 B 3 17.5ms
2 35281 37125 87 3 10.8ms
4 38806 36771 87 3 7.898ms
8 45800 46134 B4 3 5.84ms




Comparing Hardware Platforms

Batch Size
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CPU
Performance (s/epoch) Energy Usage (kJ/epoch)
23212 2699.80
3635 409.74
1510 206.12
GPU
Performance (s/epoch) Energy Usage (kJ/epoch)
435.8 76.92
71.6 18.37
44.8 12.11

Average Power (W)
116.31
112.72

136.5

Average Power (W)
176.5
256.5

249.81
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Preliminary Results

GPU is clearly superior to CPU in all but instantaneous power draw
Batching helps performance and energy efficiency, but sub-linearly
Batching increases power draw and resource utilization sub-linearly
It is not immediately clear how GPU and CPU compare to FPGA, but we

anticipate the power usage, at a minimum, will be far superior for the FPGA.
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Conclusions and Hypothetical Future Work

Hardware can improve performance of BNNs immensely
Implement ASIC

Better Power Measurement

More direct comparison with standard CNNs in inference mode
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