ECE/CS 757: Advanced Computer Architecture II

Instructor: Mikko H Lipasti

Spring 2015

University of Wisconsin-Madison

Lecture notes based on slides created by John Shen, Mark Hill, David Wood, Guri Sohi, Jim Smith, Natalie Enright Jerger, Michel Dubois, Murali Annavaram, Per Stenström and probably others
Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
• Technology example: On-chip Nanophotonics
Introduction

• How to connect individual devices into a group of communicating devices?
 – A device can be:
 • Component within a chip
 • Component within a computer
 • Computer
 • System of computers
 – Network consists of:
 • End point devices with interface to network
 • Links
 • Interconnect hardware
• Goal: transfer maximum amount of information with the least cost (minimum time, power)
Types of Interconnection Networks

• Interconnection networks can be grouped into four domains
 – Depending on number and proximity of devices to be connected

• On-Chip networks (OCNs or NoCs)
 – Devices include microarchitectural elements (functional units, register files), caches, directories, processors
 – Current designs: small number of devices
 • Ex: IBM Cell, Sun’s Niagara
 – Projected systems: dozens, hundreds of devices
 • Ex: Intel Teraflops research prototypes, 80 cores
 – Proximity: millimeters
Types of Interconnection Networks (2)

- System/Storage Area Network (SANs)
 - Multiprocessor and multicore computer systems
 - Interprocessor and processor-memory interconnections
 - Server and data center environments
 - Storage and I/O components
 - Hundreds to thousands of devices interconnected
 - IBM Blue Gene/L supercomputer (64K nodes, each with 2 processors)
 - Maximum interconnect distance typically on the order of tens of meters, but some with as high as a few hundred meters
 - InfiniBand: 120 Gbps over a distance of 300 m
 - Examples (standards and proprietary)
 - InfiniBand, Myrinet, Quadrics, Advanced Switching Interconnect
Types of Interconnection Networks (3)

- Local Area Network (LANs)
 - Interconnect autonomous computer systems
 - Machine room or throughout a building or campus
 - Hundreds of devices interconnected (1,000s with bridging)
 - Maximum interconnect distance on the order of few kilometers, but some with distance spans of a few tens of kilometers
 - Example (most popular): 1-10Gbit Ethernet
Types of Interconnection Networks (4)

• Wide Area Networks (WANs)
 – Interconnect systems distributed across the globe
 – Internetworking support is required
 – Many millions of devices interconnected
 – Maximum interconnect distance of many thousands of kilometers
 – Example: ATM
Organization

• Here we focus on On-chip networks
• Concepts applicable to all types of networks
 – Focus on trade-offs and constraints as applicable to NoCs
On-Chip Networks (NoCs)

• Why Network on Chip?
 – Ad-hoc wiring does not scale beyond a small number of cores
 • Prohibitive area
 • Long latency

• OCN offers
 – scalability
 – efficient multiplexing of communication
 – often modular in nature (ease verification)
Differences between on-chip and off-chip networks

– Off-chip: I/O bottlenecks
 • Pin-limited bandwidth
 • Inherent overheads of off-chip I/O transmission

– On-chip
 • Tight area and power budgets
 • Ultra-low on-chip latencies
Multicore Examples (1)

Sun Niagara

Mikko Lipasti - University of Wisconsin
Multicore Examples (2)

- Element Interconnect Bus
 - 4 rings
 - Packet size: 16B-128B
 - Credit-based flow control
 - Up to 64 outstanding requests
 - Latency: 1 cycle/hop

IBM Cell
Many Core Example

- Intel Polaris
 - 80 core prototype

- Academic Research
 - MIT Raw, TRIPs
 - 2-D Mesh Topology
 - Scalar Operand Networks

Mikko Lipasti - University of Wisconsin
References

Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
• Technology example: On-chip Nanophotonics
Topology Overview

- Definition: determines arrangement of channels and nodes in network
- Analogous to road map
- Often first step in network design
- Routing and flow control build on properties of topology
Abstract Metrics

• Use metrics to evaluate performance and cost of topology

• Also influenced by routing/flow control
 – At this stage
 • Assume ideal routing (perfect load balancing)
 • Assume ideal flow control (no idle cycles on any channel)

• Switch Degree: number of links at a node
 – Proxy for estimating cost
 • Higher degree requires more links and port counts at each router
Latency

• Time for packet to traverse network
 – Start: head arrives at input port
 – End: tail departs output port
• Latency = Head latency + serialization latency
 – Serialization latency: time for packet with Length L to cross channel with bandwidth b \((L/b) \)
• Hop Count: the number of links traversed between source and destination
 – Proxy for network latency
 – Per hop latency with zero load
Impact of Topology on Latency

- Impacts average minimum hop count
- Impact average distance between routers
- Bandwidth
Throughput

• Data rate (bits/sec) that the network accepts per input port

• Max throughput occurs when one channel saturates
 – Network cannot accept any more traffic

• Channel Load
 – Amount of traffic through channel c if each input node injects 1 packet in the network
Maximum channel load

• Channel with largest fraction of traffic
• Max throughput for network occurs when channel saturates
 – Bottleneck channel
Bisection Bandwidth

• Cuts partition all the nodes into two disjoint sets
 – Bandwidth of a cut

• Bisection
 – A cut which divides all nodes into nearly half
 – Channel bisection \rightarrow min. channel count over all bisections
 – Bisection bandwidth \rightarrow min. bandwidth over all bisections

• With uniform traffic
 – $\frac{1}{2}$ of traffic cross bisection
Throughput Example

• Bisection = 4 (2 in each direction)
• With uniform random traffic
 – 3 sends 1/8 of its traffic to 4,5,6
 – 3 sends 1/16 of its traffic to 7 (2 possible shortest paths)
 – 2 sends 1/8 of its traffic to 4,5
 – Etc
• Channel load = 1
Path Diversity

• Multiple minimum length paths between source and destination pair
• Fault tolerance
• Better load balancing in network
• Routing algorithm should be able to exploit path diversity
• We’ll see shortly
 – Butterfly has no path diversity
 – Torus can exploit path diversity
Path Diversity (2)

• Edge disjoint paths: no links in common
• Node disjoint paths: no nodes in common except source and destination
• If $j =$ minimum number of edge/node disjoint paths between any source-destination pair
 - Network can tolerate j link/node failures

• Path diversity does not provide pt-to-pt order
 - Implications on coherence protocol design!
Symmetry

• Vertex symmetric:
 – An automorphism exists that maps any node \(a \) onto another node \(b \)
 – Topology same from point of view of all nodes

• Edge symmetric:
 – An automorphism exists that maps any channel \(a \) onto another channel \(b \)
Direct & Indirect Networks

• Direct: Every switch also network end point
 – Ex: Torus

• Indirect: Not all switches are end points
 – Ex: Butterfly
Torus (1)

- **K-ary n-cube**: k^n network nodes
- **n-dimensional grid with k nodes in each dimension**

3-ary 2-cube

2,3,4-ary 3-mesh
Torus (2)

• Topologies in Torus Family
 – Ring k-ary 1-cube
 – Hypercubes 2-ary n-cube

• Edge Symmetric
 – Good for load balancing
 – Removing wrap-around links for mesh loses edge symmetry
 • More traffic concentrated on center channels

• Good path diversity

• Exploit locality for near-neighbor traffic
Torus (3)

\[H_{\text{min}} = \begin{cases} \frac{nk}{4} & \text{keven} \\ n\left(\frac{k}{4} - \frac{1}{4k}\right) & \text{kodd} \end{cases} \]

- Hop Count:
- Degree = 2n, 2 channels per dimension
Channel Load for Torus

• Even number of k-ary $(n-1)$-cubes in outer dimension

• Dividing these k-ary $(n-1)$-cubes gives 2 sets of k^{n-1} bidirectional channels or $4k^{n-1}$

• $\frac{1}{2}$ Traffic from each node cross bisection

\[
\text{channel load} = \frac{N}{2} \times \frac{k}{4N} = \frac{k}{8}
\]

• Mesh has $\frac{1}{2}$ the bisection bandwidth of torus
Torus Path Diversity

\[|R_{xy}| = \begin{pmatrix} \Delta x + \Delta y \\ \Delta y \end{pmatrix} \]

2 dimensions*

\(\Delta x = 2, \Delta y = 2 \)

\[|R_{xy}| = 6 \]

\[|R_{xy}| = 24 \text{ NW, NE, SW, SE combos} \]

\[|R_{xy}| = \prod_{i=0}^{n-1} \left(\sum_{j=i}^{n-1} \Delta j \right) = \frac{\left(\sum_{i=0}^{n-1} \Delta i \right)!}{\prod_{i=0}^{n-1} \Delta i!} \]

2 edge and node disjoint minimum paths

n dimensions with \(\Delta i \) hops in i dimension

*assume single direction for x and y

Mikko Lipasti-University of Wisconsin
Implementation

• Folding
 – Equalize path lengths
 • Reduces max link length
 • Increases length of other links
Concentration

• Don’t need 1:1 ratio of network nodes and cores/memory
• Ex: 4 cores concentrated to 1 router
Butterfly

• K-ary n-fly: \(k^n \) network nodes
• Example: 2-ary 3-fly
• Routing from 000 to 010
 – Dest address used to directly route packet
 – Bit n used to select output port at stage n
Butterfly (2)

- No path diversity \(|R_{xy}| = 1 \)
- Hop Count
 - \(\log_k n + 1 \)
 - Does not exploit locality
 - Hop count same regardless of location
- Switch Degree = 2k
- Channel Load \(\rightarrow \) uniform traffic

\[
\frac{NH_{\text{min}}}{C} = \frac{k^n (n + 1)}{k^n (n + 1)} = 1
\]

- Increases for adversarial traffic
Flattened Butterfly

• Proposed by Kim et al (ISCA 2007)
 – Adapted for on-chip (MICRO 2007)
• Advantages
 – Max distance between nodes = 2 hops
 – Lower latency and improved throughput compared to mesh
• Disadvantages
 – Requires higher port count on switches (than mesh, torus)
 – Long global wires
 – Need non-minimal routing to balance load
• Path diversity through non-minimal routes
Clos Network

Mikko Lipasti-University of Wisconsin
Clos Network

• 3-stage indirect network
• Characterized by triple (m, n, r)
 – M: # of middle stage switches
 – N: # of input/output ports on input/output switches
 – R: # of input/output switching
• Hop Count = 4
Folded Clos (Fat Tree)

- Bandwidth remains constant at each level
- Regular Tree: Bandwidth decreases closer to root
Fat Tree (2)

- Provides path diversity
Common On-Chip Topologies

• Torus family: mesh, concentrated mesh, ring
 – Extending to 3D stacked architectures
 – Favored for low port count switches
• Butterfly family: Flattened butterfly
Topology Summary

• First network design decision
• Critical impact on network latency and throughput
 – Hop count provides first order approximation of message latency
 – Bottleneck channels determine saturation throughput
Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
• Technology example: On-chip Nanophotonics
Routing Overview

• Discussion of topologies assumed ideal routing
• Practically though routing algorithms are not ideal
• Discuss various classes of routing algorithms
 – Deterministic, Oblivious, Adaptive
• Various implementation issues
 – Deadlock
Routing Basics

• Once topology is fixed
• Routing algorithm determines path(s) from source to destination
Routing Algorithm Attributes

• Number of destinations
 – Unicast, Multicast, Broadcast?

• Adaptivity
 – Oblivious or Adaptive? Local or Global knowledge?

• Implementation
 – Source or node routing?
 – Table or circuit?
Oblivious

• Routing decisions are made without regard to network state
 – Keeps algorithms simple
 – Unable to adapt

• Deterministic algorithms are a subset of oblivious
Deterministic

- All messages from Src to Dest will traverse the same path
- Common example: Dimension Order Routing (DOR)
 - Message traverses network dimension by dimension
 - Aka XY routing
- Cons:
 - Eliminates any path diversity provided by topology
 - Poor load balancing
- Pros:
 - Simple and inexpensive to implement
 - Deadlock free
Valiant’s Routing Algorithm

- To route from s to d, randomly choose intermediate node d’
 - Route from s to d’ and from d’ to d.
- Randomizes any traffic pattern
 - All patterns appear to be uniform random
 - Balances network load
- Non-minimal
Minimal Oblivious

• Valiant’s: Load balancing comes at expense of significant hop count increase
 – Destroys locality

• Minimal Oblivious: achieve some load balancing, but use shortest paths
 – d' must lie within minimum quadrant
 – 6 options for d'
 – Only 3 different paths
Adaptive

• Uses network state to make routing decisions
 – Buffer occupancies often used
 – Couple with flow control mechanism
• Local information readily available
 – Global information more costly to obtain
 – Network state can change rapidly
 – Use of local information can lead to non-optimal choices
• Can be minimal or non-minimal
Minimal Adaptive Routing

• Local info can result in sub-optimal choices
Non-minimal adaptive

• Fully adaptive
• Not restricted to take shortest path
 – Example: FBfly
• Misrouting: directing packet along non-productive channel
 – Priority given to productive output
 – Some algorithms forbid U-turns
• Livelock potential: traversing network without ever reaching destination
 – Mechanism to guarantee forward progress
 • Limit number of misroutings
Non-minimal routing example

• Longer path with potentially lower latency

• Livelock: continue routing in cycle
Routing Deadlock

- Without routing restrictions, a resource cycle can occur
 - Leads to deadlock
Eliminate Cycles by Construction

• Don’t allow turns that cause cycles
• In general, acquire resources in fixed priority order
Turn Model Routing

- Some adaptivity by removing 2 of 8 turns
 - Remains deadlock free (but less restrictive than DOR)
• Not a valid turn elimination
 – Resource cycle results
Routing Implementation

• Source tables
 – Entire route specified at source
 – Avoids per-hop routing latency
 – Unable to adapt to network conditions
 – Can specify multiple routes per destination

• Node tables
 – Store only next routes at each node
 – Smaller tables than source routing
 – Adds per-hop routing latency
 – Can adapt to network conditions
 • Specify multiple possible outputs per destination
Implementation

• Combinational circuits can be used
 – Simple (e.g. DOR): low router overhead
 – Specific to one topology and one routing algorithm
 • Limits fault tolerance

• Tables can be updated to reflect new configuration, network faults, etc
Circuit Based

Productive Direction Vector

Queue lengths

Selected Direction Vector

Route selection

Mikko Lipasti-University of Wisconsin
Routing Summary

• Latency paramount concern
 – Minimal routing most common for NoC
 – Non-minimal can avoid congestion and deliver low latency

• To date: NoC research favors DOR for simplicity and deadlock freedom
 – On-chip networks often lightly loaded

• Only covered unicast routing
 – Recent work on extending on-chip routing to support multicast
Topology & Routing References

• Topology

• Routing
Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
• Technology example: On-chip Nanophotonics
Flow Control Overview

• Topology: determines connectivity of network
• Routing: determines paths through network
• Flow Control: determine allocation of resources to messages as they traverse network
 – Buffers and links
 – Significant impact on throughput and latency of network
Packets

• Messages: composed of one or more packets
 – If message size is \(\leq \) maximum packet size only one packet created

• Packets: composed of one or more flits

• Flit: flow control digit

• Phit: physical digit
 – Subdivides flit into chunks = to link width
 – In on-chip networks, flit size = phit size.
 • Due to very wide on-chip channels
Switching

• Different flow control techniques based on granularity
• Circuit-switching: operates at the granularity of messages
• Packet-based: allocation made to whole packets
• Flit-based: allocation made on a flit-by-flit basis
Circuit Switching

• All resources (from source to destination) are allocated to the message prior to transport
 – Probe sent into network to reserve resources
• Once probe sets up circuit
 – Message does not need to perform any routing or allocation at each network hop
 – Good for transferring large amounts of data
 • Can amortize circuit setup cost by sending data with very low per-hop overheads
• No other message can use those resources until transfer is complete
 – Throughput can suffer due setup and hold time for circuits
Circuit Switching Example

- Significant latency overhead prior to data transfer
- Other requests forced to wait for resources
Packet-based Flow Control

• Store and forward
• Links and buffers are allocated to entire packet
• Head flit waits at router until entire packet is buffered before being forwarded to the next hop
• Not suitable for on-chip
 – Requires buffering at each router to hold entire packet
 – Incurs high latencies (pays serialization latency at each hop)
Store and Forward Example

- High per-hop latency
- Larger buffering required
Virtual Cut Through

• Packet-based: similar to Store and Forward
• Links and Buffers allocated to entire packets
• Flits can proceed to next hop before tail flit has been received by current router
 – But only if next router has enough buffer space for entire packet
• Reduces the latency significantly compared to SAF
• But still requires large buffers
 – Unsuitable for on-chip
Virtual Cut Through Example

- Lower per-hop latency
- Larger buffering required

Mikko Lipasti - University of Wisconsin
Flit Level Flow Control

• Wormhole flow control
• Flit can proceed to next router when there is buffer space available for that flit
 – Improved over SAF and VCT by allocating buffers on a flit-basis
• Pros
 – More efficient buffer utilization (good for on-chip)
 – Low latency
• Cons
 – Poor link utilization: if head flit becomes blocked, all links spanning length of packet are idle
 • Cannot be re-allocated to different packet
 • Suffers from head of line (HOL) blocking
Wormhole Example

- 6 flit buffers/input port

- Red holds this channel: channel remains idle until read proceeds
- Channel idle but red packet blocked behind blue
- Buffer full: blue cannot proceed
- Blocked by other packets

Mikko Lipasti - University of Wisconsin
Virtual Channel Flow Control

• Virtual channels used to combat HOL block in wormhole
• Virtual channels: multiple flit queues per input port
 – Share same physical link (channel)
• Link utilization improved
 – Flits on different VC can pass blocked packet
Virtual Channel Example

- 6 flit buffers/input port
- 3 flit buffers/VC

Buffer full: blue cannot proceed
Blocked by other packets
Deadlock

• Using flow control to guarantee deadlock freedom give more flexible routing

• Escape Virtual Channels
 – If routing algorithm is not deadlock free
 – VCs can break resource cycle
 – Place restriction on VC allocation or require one VC to be DOR

• Assign different message classes to different VCs to prevent protocol level deadlock
 – Prevent req-ack message cycles
Buffer Backpressure

• Need mechanism to prevent buffer overflow
 – Avoid dropping packets
 – Upstream nodes need to know buffer availability at downstream routers

• Significant impact on throughput achieved by flow control

• Credits

• On-off
Credit-Based Flow Control

• Upstream router stores credit counts for each downstream VC

• Upstream router
 – When flit forwarded
 • Decrements credit count
 – Count == 0, buffer full, stop sending

• Downstream router
 – When flit forwarded and buffer freed
 • Send credit to upstream router
 • Upstream increments credit count
• **Round-trip credit delay:**
 - Time between when buffer empties and when next flit can be processed from that buffer entry
 - If only single entry buffer, would result in significant throughput degradation
 - Important to size buffers to tolerate credit turn-around
On-Off Flow Control

• Credit: requires upstream signaling for every flit
• On-off: decreases upstream signaling
• Off signal
 – Sent when number of free buffers falls below threshold F_{off}
• On signal
 – Send when number of free buffers rises above threshold F_{on}
On-Off Timeline

- Less signaling but more buffering
 - On-chip buffers more expensive than wires

F\textsubscript{off} set to prevent flits arriving before t4 from overflowing

F\textsubscript{on} set so that Node 2 does not run out of flits between t5 and t8

Mikko Lipasti - University of Wisconsin
Virtual Channels vs. Physical Channels

• Virtual channels share one physical set of links
 – Buffers hold flits that are in flight to free up physical channel
 – Flits from alternate VCs can traverse shared physical link

• This was the right design decision when:
 – Links were expensive (off-chip, backplane traces, or cables)
 – Buffers/router resources were cheap
 – Router latency was a small fraction of link latency

• With modern on-chip networks, this may not be true
 – Links are cheap (just global wires)
 – Buffer/router resources consume dynamic and static power, hence not cheap
 – Router latency is significant relative to link latency (usually just one cycle)

• Tilera design avoids virtual channels, simply provides multiple physical channels to avoid deadlock
Flow Control Summary

• On-chip networks require techniques with lower buffering requirements
 – Wormhole or Virtual Channel flow control

• Dropping packets unacceptable in on-chip environment
 – Requires buffer backpressure mechanism

• Complexity of flow control impacts router microarchitecture (next)
Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
• Technology example: On-chip Nanophotonics
Router Microarchitecture Overview

• Consist of buffers, switches, functional units, and control logic to implement routing algorithm and flow control
• Focus on microarchitecture of Virtual Channel router
• Router is pipelined to reduce cycle time
Virtual Channel Router

Routing Computation

Virtual Channel Allocator

Switch Allocator

Input Ports

VC 0

VC x

Mikko Lipasti - University of Wisconsin
Baseline Router Pipeline

- Canonical 5-stage (+link) pipeline
 - BW: Buffer Write
 - RC: Routing computation
 - VA: Virtual Channel Allocation
 - SA: Switch Allocation
 - ST: Switch Traversal
 - LT: Link Traversal
• Routing computation performed once per packet
• Virtual channel allocated once per packet
• Body and tail flits inherit this info from head flit
Router Pipeline Optimizations

• Baseline (no load) delay
 \[
 \text{Baseline} = (5\text{cycles} + \text{link delay}) \times \text{hops} + t_{\text{serialization}}
 \]

• Ideally, only pay link delay

• Techniques to reduce pipeline stages
 – Lookahead routing: At current router perform routing computation for next router
 • Overlap with BW
Router Pipeline Optimizations (2)

• Speculation
 – Assume that Virtual Channel Allocation stage will be successful
 • Valid under low to moderate loads
 – Entire VA and SA in parallel

<table>
<thead>
<tr>
<th>BW</th>
<th>VA</th>
<th>ST</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

– If VA unsuccessful (no virtual channel returned)
 • Must repeat VA/SA in next cycle
– Prioritize non-speculative requests
Router Pipeline Optimizations (3)

• Bypassing: when no flits in input buffer
 – Speculatively enter ST
 – On port conflict, speculation aborted

<table>
<thead>
<tr>
<th>VA</th>
<th>NRC</th>
<th>Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>LT</td>
<td></td>
</tr>
</tbody>
</table>

 – In the first stage, a free VC is allocated, next routing is performed and the crossbar is setup
Buffer Organization

- Single buffer per input
- Multiple fixed length queues per physical channel
Arbiters and Allocators

- *Allocator* matches N requests to M resources
- *Arbiter* matches N requests to 1 resource
- Resources are VCs (for virtual channel routers) and crossbar switch ports.
- Virtual-channel allocator (VA)
 - Resolves contention for output virtual channels
 - Grants them to input virtual channels
- Switch allocator (SA) that grants crossbar switch ports to input virtual channels
- Allocator/arbiter that delivers high matching probability translates to higher network throughput.
 - Must also be fast and able to be pipelined
Round Robin Arbiter

• Last request serviced given lowest priority
• Generate the next priority vector from current grant vector
• Exhibits fairness
Matrix Arbiter

• Least recently served priority scheme
• Triangular array of state bits w_{ij} for $i < j$
 – Bit w_{ij} indicates request i takes priority over j
 – Each time request k granted, clears all bits in row k and sets all bits in column k
• Good for small number of inputs
• Fast, inexpensive and provides strong fairness
Separable Allocator

- A 3:4 allocator
- First stage: decides which of 3 requestors wins specific resource
- Second stage: ensures requestor is granted just 1 of 4 resources
Crossbar Dimension Slicing

• Crossbar area and power grow with $O((pw)^2)$

• Replace 1 5x5 crossbar with 2 3x3 crossbars

Mikko Lipasti-University of Wisconsin
Crossbar speedup

- Increase internal switch bandwidth
- Simplifies allocation or gives better performance with a simple allocator
- Output speedup requires output buffers
 - Multiplex onto physical link
Evaluating Interconnection Networks

• Network latency
 – Zero-load latency: average distance * latency per unit distance

• Accepted traffic
 – Measure the max amount of traffic accepted by the network before it reaches saturation

• Cost
 – Power, area, packaging
Interconnection Network Evaluation

• Trace based
 – Synthetic trace-based
 • Injection process
 – Periodic, Bernoulli, Bursty
 – Workload traces
• Full system simulation
Traffic Patterns

• Uniform Random
 – Each source equally likely to send to each destination
 – Does not do a good job of identifying load imbalances in design

• Permutation (several variations)
 – Each source sends to one destination

• Hot-spot traffic
 – All send to 1 (or small number) of destinations
Microarchitecture Summary

• Ties together topological, routing and flow control design decisions
• Pipelined for fast cycle times
• Area and power constraints important in NoC design space
Interconnection Network Summary

Latency vs. Offered Traffic

- Zero load latency (topology+routing+flow control)
- Min latency given by routing algorithm
- Min latency given by topology

Throughput given by flow control
Throughput given by routing
Throughput given by topology

Offered Traffic (bits/sec)

- Latency vs. Offered Traffic
Flow Control and Microarchitecture References

• Flow control

• Router Microarchitecture
Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
• Technology example: On-chip Nanophotonics
Distributed processing on chip

• Future chips rely on distributed processing
 – Many computation/cache/DRAM/IO nodes
 – Placement, topology, core uarch/strength, tbd

• Conventional interconnects may not suffice
 – Buses not viable
 – Crossbars are slow, power-hungry, expensive
 – NOCs impose latency, power overhead

• Nanophotonics to the rescue
 – Communicate with photons
 – Inherent bandwidth, latency, energy advantages
 – Silicon integration becoming a reality

• Challenges & opportunities remain
Si Photonics: How it works

Laser
• Off-Chip Power

Ring Resonator
• Wavelength Magnet

Waveguide
• Optical Wire

0.5 μm

~3.5 μm

[Koch ‘07]

[Intel]

[HP]

Mikko Lipasti-University of Wisconsin
Ring Resonators
Key attributes of Si photonics

• Very low latency, very high bandwidth
• Up to 1000x energy efficiency gain
• Challenges
 – Resonator thermal tuning: heaters
 – Integration, fabrication, *is this real?*
• Opportunities
 – Static power dominant (laser, thermal)
 – Destructive reads: fast wired or
Nanophotonics overview

• Sharing the nanophotonic channel
 – Light-speed arbitration [MICRO 09]

• Utilizing the nanophotonic channel
 – Atomic coherence [HPCA 11]
Corona substrate [ISCA08]

Targeting Year 2017

– Logically a ring topology
– One concentric ring per node
– 3D stacked: optical, analog, digital
Multiple writer single reader (MWSR) interconnects

Arbitration prevents corruption of in-flight data
Motivating an optical arbitration solution

MWSR Arbiter must be:

1. *Global* - Many writers requesting access
2. *Very fast* – Otherwise bottleneck

Optical arbiter avoids OEO conversion delays, provides light-speed arbitration
Proposed optical protocols

• Token-based protocols
 – Inspired by classic token ring
 – Token == transmission rights
 – Fits well with ring-shaped interconnect
 – Distributed, Scalable
 – (limited to ring)
Baseline

- Based on traditional token protocols
- Repeat token at each node
 - But data is not repeated!
 - Poor utilization
Optical arbitration basics

<table>
<thead>
<tr>
<th>Token - Inject</th>
<th>Token - Seize</th>
<th>Token - Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waveguide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No Repeat!
- Token latency bounded by the time of flight between requesters.
Arbitration solutions

Token Channel

Single Token / Serial Writes

- Token passing allows token to pace transmission tail (no bubbles)

Token Slot

Multiple Tokens / Simultaneous Writes

- Token passing allows token to directly precede slot
Flow control and fairness

Flow Control:
• Use token refresh as opportunity to encode flow control information (credits available)
• Arbitration winners decrement credit count

Fairness:
• Upstream nodes get first shot at tokens
• Need mechanism to prevent starvation of downstream nodes
Results - Performance

Token Slot benefits from
- the availability of multiple tokens (multiple writers)
- fast turn-around time of flow-control mechanism
Results - Latency

Token Slot has the lowest latency and saturates at 80%+ load
Optical arbitration summary

• Arbitration speed has to match transfer speed for fine-grained communication
 – Arbiter has to be optical

• High throughput is achievable
 – 85+% for token slot

• Limited to simple topologies (MWSR)

• Implementation challenges
 – Opt-elec-logic-elec-opt in 200ps (@5GHz)
Nanophotonics

☑ Nanophotonics overview
☑ Sharing the nanophotonic channel
 – Light-speed arbitration [MICRO 09]
• Utilizing the nanophotonic channel
 – Atomic coherence [HPCA 11]
What makes coherence hard?

Unordered interconnects
 – split transaction buses, meshes, etc

Speculation
 – Sharer-prediction, speculative data use, etc.

Multiple initiators of coherence requests
 – L1-to-L2, Directory Caches, Coherence Domains, etc

→ State-event pair explosion

• → Verification headache
Example: MSI (SGI-Origin-like, directory, invalidate)

Stable States

Mikko Lipasti - University of Wisconsin
Example: MSI (SGI-Origin-like, directory, invalidate)

Stable States

Busy States
Example: MSI (SGI-Origin-like, directory, invalidate)

Stable States

Busy States

Races

“unexpected” events from concurrent requests to same block
Cache coherence complexity

L2 MOETSI Transitions

[Lepak Thesis, ‘03]
Cache coherence verification headache

Papers:
- So Many States, So Little Time: Verifying Memory Coherence in the Cray X1

Formal Methods:
- e.g. Leslie Lamport’s TLA+ specification language @ Intel

AI39. Cache Data Access Request from One Core Hitting a Modified Line in the L1 Data Cache of the Other Core May Cause Unpredictable System Behavior

Simple Protocol

Simple Verification
Atomic Coherence: Simplicity

w/ races

w/o races
Race resolution

- **Cause:**
 - Concurrently active coherence requests to block A

- **Remedy:**
 - Only allow one coherence request to block A to be active at a time.
Race resolution

Atomic Substrate

Core 0

CACHE

Core 1

CACHE

Coherence Substrate

Mikko Lipasti

University of Wisconsin
Race resolution

-- Atomic Substrate is on critical path
+ Can optimize substrates separately
Atomic & Coherence Substrates

(Apply Fancy Nanophotonics Here)

(Add speculation to a traditional protocol)
Mutexes circulate on ring

Single out mutex:
hash(addr X) \rightarrow \lambda Y @ cycle Z
Mutex acquire

Exploits OFF-resonance rings: mutex passes P1, P2 uninterrupted

[Requesting Mutex]
[Won Mutex]

Mikko Lipasti-University of Wisconsin
Mutex release

[Requesting Mutex]

[Won Mutex]

Mikko Lipasti - University of Wisconsin
Mutexes on ring

1 mutex = 200 ps = ~2 cm = 1 cycle @ 5 GHz

Mutex

\[\frac{4 \text{mutex}}{\lambda} \times \frac{64\lambda}{\text{waveguide}} \times 4 \text{waveguides} \]

= 1024

Latency To:
- seize free mutex : \(\leq 4 \) cycles
- tune ring resonator: < 1 cycle
Atomic Coherence: Complexity

Static:

Dynamic:
(random tester)

* Atomic Coherence reduces complexity
Performance

(128 in-order cores, optical data interconnect, MOEFSI directory)

Slowdown relative to non-atomic MOEFSI

What is causing the slowdown?

coherence agnostic
Optimizing coherence

Observation:
Holding Block B’s mutex gives holder free reign over coherence activity related to block B

Owned and Forward State:
• Responsible for satisfying on-chip read misses

Opportunity:
• Try to keep O/F alive
• If O (or F) block evicted:
 While mutex is held, ‘shift’ O/F state to sharer

(or hand-off responsibility)
Optimizing coherence

- If O (or F) block evicted: ‘Shift’ O/F state to sharer

Complexity:

L2 transitions

(b/c less variety in sharing possibilities)

Performance:

Speedup relative to atomic MOEFSI
Atomic Coherence Summary

• Nanophotonics as enabler
 – Very fast chip-wide consensus

• Atomic Protocols are simpler protocols
 – And can have minimal cost to performance (w/ nanophotonics)
 – Opportunity for straightforward protocol enhancements: ShiftF

• More details in HPCA-11 paper
 – Push protocol (update-like)
Nanophotonics

- Nanophotonics overview
- Sharing the nanophotonic channel
 - Light-speed arbitration [MICRO 09]
- Utilizing the nanophotonic channel
 - Atomic coherence [HPCA 11]
Nanophotonics References

• References:
 – Vantrease et al., “Corona...”, ISCA 2008
 – Vantrease et al., “Light-speed arbitration...”, MICRO 2009
 – Dana Vantrease Ph.D. Thesis, Univ. of WI 2010
Lecture Outline

• Introduction to Networks
• Network Topologies
• Network Routing
• Network Flow Control
• Router Microarchitecture
• Technology example: On-chip Nanophotonics
Readings
