
ECE/CS 757: Advanced
Computer Architecture II

Instructor:Mikko H Lipasti

Spring 2017

University of Wisconsin-Madison

Lecture notes based on slides created by John Shen,
Mark Hill, David Wood, Guri Sohi, Jim Smith, Natalie

Enright Jerger, Michel Dubois, Murali Annavaram,
Per Stenström and probably others

Computer Architecture

• Instruction Set Architecture (IBM 360)
– … the attributes of a [computing] system as seen by the

programmer. I.e. the conceptual structure and
functional behavior, as distinct from the organization
of the data flows and controls, the logic design, and the
physical implementation. -- Amdahl, Blaaw, & Brooks,
1964

• Machine Organization (microarchitecture)
– ALUS, Buses, Caches, Memories, etc.

• Machine Implementation (realization)
– Gates, cells, transistors, wires

757 In Context
• Prior courses

– 352 – gates up to multiplexors and adders
– 354 – high-level language down to machine language interface or

instruction set architecture (ISA)
– 552 – implement logic that provides ISA interface
– CS 537 – provides OS background (co-req. OK)

• This course – 757 – covers parallel machines
– Multiprocessor systems
– Data parallel systems
– Memory systems that exploit MLP
– Etc.

• Additional courses
– ECE 752 covers advanced uniprocessor design (not a prereq)

– Will review key topics in next lecture
– ECE 755 covers VLSI design
– ME/ECE 759 covers parallel programming
– CS 758 covers special topics (recently parallel programming)

Why Take 757?

• To become a computer designer

– Alumni of this class helped design your computer

• To learn what is under the hood of a computer

– Innate curiosity

– To better understand when things break

– To write better code/applications

– To write better system software (O/S, compiler, etc.)

• Because it is intellectually fascinating!

• Because multicore/parallel systems are
ubiquitous

Computer Architecture

• Exercise in engineering tradeoff analysis
– Find the fastest/cheapest/power-efficient/etc. solution

– Optimization problem with 100s of variables

• All the variables are changing
– At non-uniform rates

– With inflection points

– Only one guarantee: Today’s right answer will be wrong
tomorrow

• Two high-level effects:
– Technology push

– Application Pull

Trends

• Moore’s Law for device integration

• Chip power consumption

• Single-thread performance trend
[source: Intel] Mikko Lipasti-University of Wisconsin

Dynamic Power

• Static CMOS: current flows when active
– Combinational logic evaluates new inputs
– Flip-flop, latch captures new value (clock edge)

• Terms
– C: capacitance of circuit

• wire length, number and size of transistors

– V: supply voltage
– A: activity factor
– f: frequency

• Future: Fundamentally power-constrained

unitsi

iiidyn fAVCkP 2

Mikko Lipasti-University of Wisconsin

Mikko Lipasti-University of Wisconsin

Multicore Mania

• First, servers

– IBM Power4, 2001

• Then desktops

– AMD Athlon X2, 2005

• Then laptops

– Intel Core Duo, 2006

• Now, cellphone & tablet

– Qualcomm, Nvidia Tegra, Apple A6, etc.

Why Multicore

Single Core Dual Core Quad Core

Core area A ~A/2 ~A/4

Core power W ~W/2 ~W/4

Chip power W + O W + O’ W + O’’

Core performance P 0.9P 0.8P

Chip performance P 1.8P 3.2P

Mikko Lipasti-University of Wisconsin

Core Core Core
Core

Core

Core

Core

f

Amdahl’s Law

f – fraction that can run in parallel

1-f – fraction that must run serially

Mikko Lipasti-University of Wisconsin

Time

#
 C

P
U

s

1
1-f

f

n

n

f
f

Speedup

)1(

1

f

n

f
f

n

 1

1

1

1
lim

Fixed Chip Power Budget

• Amdahl’s Law

– Ignores (power) cost of n cores

• Revised Amdahl’s Law

– More cores each core is slower

– Parallel speedup < n

– Serial portion (1-f) takes longer

– Also, interconnect and scaling overhead
Mikko Lipasti-University of Wisconsin

#
 C

P
U

s

Time

1
1-f

f

n

Fixed Power Scaling

• Fixed power budget forces slow cores

• Serial code quickly dominates

Mikko Lipasti-University of Wisconsin

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

C
h

ip
 P

e
rf

o
rm

an
ce

of cores/chip

99.9% Parallel

99% Parallel

90% Parallel

80% Parallel

Challenges
• Parallel scaling limits many-core

– >4 cores only for well-behaved programs

– Optimistic about new applications

• Interconnect overhead

• Single-thread performance

– Will degrade unless we innovate

• Parallel programming

– Express/extract parallelism in new ways

– Retrain programming workforce

Mikko Lipasti-University of Wisconsin

Finding Parallelism
1. Functional parallelism

– Car: {engine, brakes, entertain, nav, …}

– Game: {physics, logic, UI, render, …}

2. Automatic extraction

– Decompose serial programs

3. Data parallelism

– Vector, matrix, db table, pixels, …

4. Request parallelism

– Web, shared database, telephony, …

 Mikko Lipasti-University of Wisconsin

Balancing Work
• Amdahl’s parallel phase f: all cores busy

• If not perfectly balanced

– (1-f) term grows (f not fully parallel)

– Performance scaling suffers

– Manageable for data & request parallel apps

– Very difficult problem for other two:

• Functional parallelism

• Automatically extracted

Mikko Lipasti-University of Wisconsin

Coordinating Work
• Synchronization

– Some data somewhere is shared

– Coordinate/order updates and reads

– Otherwise chaos

• Traditionally: locks and mutual exclusion

– Hard to get right, even harder to tune for perf.

• Research to reality: Transactional Memory

– Programmer: Declare potential conflict

– Hardware and/or software: speculate & check

– Commit or roll back and retry

– IBM, Intel, others, now support in HW
Mikko Lipasti-University of Wisconsin

Single-thread Performance

• Still most attractive source of performance

– Speeds up parallel and serial phases

– Can use it to buy back power

• Must focus on power consumption

– Performance benefit ≥ Power cost

• Focus of 752; brief review coming up

Mikko Lipasti-University of Wisconsin

Focus of this Course
• How to minimize these overheads

– Interconnect

– Synchronization

– Cache Coherence

– Memory systems

• Also

– How to write parallel programs (a little)

– Non-cache coherent systems (clusters, MPP)

– Data-parallel systems

Expected Background
• ECE/CS 552 or equivalent

– Design simple uniprocessor

– Simple instruction sets

– Organization

– Datapath design

– Hardwired/microprogrammed control

– Simple pipelining

– Basic caches

– Some 752 content (optional review)

• High-level programming experience
– C/UNIX skills – modify simulators

About This Course

• Readings
– Posted on website later this week

– Make sure you keep up with these! Often discussed in
depth in lecture, with required participation

– Subset of papers must be reviewed in writing, submitted
through learn@uw

• Lecture
– Attendance required, pop quizzes

• Homeworks
– Not collected, for your benefit only

– Develop deeper understanding, prepare for midterms

About This Course

• Exams

– Midterm 1: Friday 3/3 in class

– Midterm 2: Monday 4/17 in class

– Keep up with reading list!

• Textbook
– For reference:

• Dubois, Annavaram, Stenström, Parallel Computer Organization
and Design, Cambridge Univ. Press, 2012.

• 4 beta chapters from Jim Smith posted on course web site

– Additional references available as well
• Morgan Kauffman synthesis lectures (UW access only)

About This Course

• Course Project

– Research project

• Replicate results from a paper

• Or attempt something novel

• Parallelize/characterize new application

– Proposal due 3/17, status report 4/21

• Final project includes a written report and
an oral presentation

– Written reports due 5/8

– Presentations during class time 5/1, 5/3

About This Course

• Grading

– Homework, quizzes, paper reviews 20%

– Midterm 1 25%

– Midterm 2 25%

– Project 30%

• Web Page (check regularly)

– http://ece757.ece.wisc.edu

About This Course

• Office Hours

– Prof. Lipasti: EH 3621, TBD, or by appt.

• Communication channels

– E-mail to instructor, class e-mail list

• ece757-1-s17@lists.wisc.edu

– Web page

• http://ece757.ece.wisc.edu

– Office hours

About This Course
• Other Resources

– Computer Architecture Colloquium –
Tuesday 4-5PM, 1240 CSS

– Computer Engineering Seminar – Friday 12-
1PM, EH4610

– Architecture mailing list:
http://lists.cs.wisc.edu/mailman/listinfo/architecture

– WWW Computer Architecture Page
http://www.cs.wisc.edu/~arch/www

http://lists.cs.wisc.edu/mailman/listinfo/architecture

About This Course

• Lecture schedule:

– MWF 1-2:15pm

– Cancel 1 of 3 lectures (on average)

– Free up several weeks near end for project work

26

Tentative Schedule (1st half)
Week Dates Topic

1 1/18, 1/20 Introduction

752 review

2 1/23, 1/25

1/27

Class cancelled

Cores, multithreading, multicore

3 1/30, 2/1, 2/3 MP Software

Memory Systems

4 2/6, 2/8

2/10

Class cancelled

MP Memory Systems

5 2/13, 2/15, 2/17 Coherence & consistency

6 2/20, 2/22, 2/24 Coherence & consistency cont’d

7 2/27, 3/1

3/3

Catch up / midterm review

Midterm 1 in class on 3/3

8 3/6

3/8, 3/10

Class cancelled

Simulation Methodology

Transactional Memory

9 3/13, 3/15, 3/17 Interconnection Networks

Project proposal due 3/17

N/A 3/20, 3/22, 3/24 Spring break

Tentative Schedule (2nd half)
Week Dates Topic

10 3/27, 3/29, 3/31 SIMD

MPP

11 4/3, 4/5

4/7

Clusters, GPGPUs

Class cancelled

12 4/10, 4/12, 4/14 Catch up and review

13 4/17

4/19, 4/21

Midterm 2 in class 4/17

No lecture; project work

Project status report due 4/21

14 4/24, 4/26, 4/28 No lecture; project work

15 5/1, 5/3 Project talks, course Evaluation

16 5/8 No final exam

Project reports due 5/8

29

Brief Introduction to Parallel Computing

• Thread-level parallelism

• Multiprocessor Systems

• Cache Coherence

– Snoopy

– Scalable

• Flynn Taxonomy

• UMA vs. NUMA

30

Thread-level Parallelism

• Instruction-level parallelism (752 focus)
– Reaps performance by finding independent work in a

single thread

• Thread-level parallelism
– Reaps performance by finding independent work across

multiple threads

• Historically, requires explicitly parallel workloads
– Originates from mainframe time-sharing workloads
– Even then, CPU speed >> I/O speed
– Had to overlap I/O latency with “something else” for the

CPU to do
– Hence, operating system would schedule other

tasks/processes/threads that were “time-sharing” the
CPU

31

Thread-level Parallelism

• Reduces effectiveness of temporal and spatial locality

32

Thread-level Parallelism

• Initially motivated by time-sharing of single CPU
– OS, applications written to be multithreaded

• Quickly led to adoption of multiple CPUs in a single system
– Enabled scalable product line from entry-level single-CPU systems

to high-end multiple-CPU systems
– Same applications, OS, run seamlessly
– Adding CPUs increases throughput (performance)

• More recently:
– Multiple threads per processor core

• Coarse-grained multithreading (aka “switch-on-event”)
• Fine-grained multithreading
• Simultaneous multithreading

– Multiple processor cores per die
• Chip multiprocessors (CMP)

33

Multiprocessor Systems

• Primary focus on shared-memory symmetric
multiprocessors

– Many other types of parallel processor systems have been
proposed and built

– Key attributes are:
• Shared memory: all physical memory is accessible to all CPUs

• Symmetric processors: all CPUs are alike

– Other parallel processors may:
• Share some memory, share disks, share nothing

• Have asymmetric processing units

• Shared memory idealisms
– Fully shared memory

– Unit latency

– Lack of contention

– Instantaneous propagation of writes

34

Motivation

• So far: one processor in a system
• Why not use N processors

– Higher throughput via parallel jobs

– Cost-effective
• Adding 3 CPUs may get 4x throughput at only 2x cost

– Lower latency from multithreaded applications
• Software vendor has done the work for you

• E.g. database, web server

– Lower latency through parallelized applications
• Much harder than it sounds

35

Where to Connect Processors?

• At processor?

– Single-instruction multiple data (SIMD)

• At I/O system?

– Clusters or multicomputers

• At memory system?

– Shared memory multiprocessors

– Focus on Symmetric Multiprocessors (SMP)

© 2005 Mikko Lipasti 36

Connect at Processor (SIMD)

Control
Processor

Instruction Memory

Data
Memory

Registers

ALU

Data
Memory

Registers

ALU

Data
Memory

Registers

ALU

. . .

. . .

Interconnection Network

37

Connect at Processor

• SIMD Assessment
– Amortizes cost of control unit over many

datapaths

– Enables efficient, wide datapaths

– Programming model has limited flexibility
• Regular control flow, data access patterns

• SIMD widely employed today
– MMX, SSE, 3DNOW vector extensions

– GPUs from Nvidia and AMD

38

Connect at I/O

• Connect with standard network (e.g. Ethernet)
– Called a cluster

– Adequate bandwidth (GB Ethernet, going to 10GB)

– Latency very high

– Cheap, but “get what you pay for”

• Connect with custom network (e.g. IBM SP1,SP2,
SP3)
– Sometimes called a multicomputer

– Higher cost than cluster

– Poorer communication than multiprocessor

• Internet data centers built this way

39

Connect at Memory:
Multiprocessors

• Shared Memory Multiprocessors

– All processors can address all physical memory

– Demands evolutionary operating systems changes

– Higher throughput with no application changes

– Low latency, but requires parallelization with proper
synchronization

• Most successful: Symmetric MP or SMP

– 2-64 microprocessors on a “bus”

– Still use cache memories

40

Cache Coherence Problem

P0 P1
Load A

A 0

Load A

A 0

Store A<= 1

1

Load A

Memory

41

Cache Coherence Problem

P0 P1
Load A

A 0

Load A

A 0

Store A<= 1

Memory

1

Load A

A 1

Sample Invalidate Protocol (MESI)

BR

Sample Invalidate Protocol (MESI)
Current

State s

Event and Local Coherence Controller Responses and Actions (s' refers to next state)

Local Read (LR) Local Write

(LW)

Local

Eviction (EV)

Bus Read

(BR)

Bus Write

(BW)

Bus Upgrade

(BU)

Invalid (I) Issue bus read

if no sharers then

s' = E

else s' = S

Issue bus

write

s' = M

s' = I Do nothing Do nothing Do nothing

Shared (S) Do nothing Issue bus

upgrade

s' = M

s' = I Respond

shared

s' = I s' = I

Exclusive

(E)
Do nothing s' = M s' = I Respond

shared

s' = S

s' = I Error

Modified

(M)
Do nothing Do nothing Write data

back;

s' = I

Respond

dirty;

Write data

back;

s' = S

Respond

dirty;

Write data

back;

s' = I

Error

44

Snoopy Cache Coherence
• All requests broadcast on bus
• All processors and memory snoop and respond
• Cache blocks writeable at one processor or read-

only at several
– Single-writer protocol

• Snoops that hit dirty lines?
– Flush modified data out of cache

– Either write back to memory, then satisfy remote miss
from memory, or

– Provide dirty data directly to requestor

– Big problem in MP systems
• Dirty/coherence/sharing misses

45

Scaleable Cache Coherence
• Eschew physical bus but still snoop

– Point-to-point tree structure

– Root of tree provides ordering point

• Or, use level of indirection through directory
– Directory at memory remembers:

• Which processor is “single writer”
– Forwards requests to it

• Which processors are “shared readers”
– Forwards write permission requests to them

– Level of indirection has a price
• Dirty misses require 3 hops instead of two

– Snoop: Requestor->Owner->Requestor

– Directory: Requestor->Directory->Owner->Requestor

Flynn Taxonomy

Flynn (1966) Single Data Multiple Data

Single Instruction SISD SIMD

Multiple Instruction MISD MIMD

46 Mikko Lipasti-University of Wisconsin

• MISD
• Fault tolerance
• Pipeline processing/streaming or systolic array

• Now extended to SPMD
• single program multiple data

Memory Organization: UMA vs. NUMA

47 Mikko Lipasti-University of Wisconsin

Memory Taxonomy

For Shared Memory Uniform
Memory

Nonuniform
Memory

Cache Coherence CC-UMA CC-NUMA

No Cache Coherence NCC-UMA NCC-NUMA

48 Mikko Lipasti-University of Wisconsin

• NUMA wins out for practical implementation
• Cache coherence favors programmer

• Common in general-purpose systems
• NCC widespread in scalable systems

• CC overhead is too high, not always necessary

49

Example Commercial Systems

• CC-UMA (SMP)

– Sun E10000: http://doi.ieeecomputersociety.org/10.1109/40.653032

• CC-NUMA

– SGI Origin 2000: The SGI Origin: A ccnuma Highly Scalable Server

• NCC-NUMA

– Cray T3E: http://www.cs.wisc.edu/~markhill/Misc/asplos96_t3e_comm.pdf

• Clusters

– ASCI: https://str.llnl.gov/str/April05/Seager.html

http://doi.ieeecomputersociety.org/10.1109/40.653032
http://doi.ieeecomputersociety.org/10.1109/40.653032
http://doi.ieeecomputersociety.org/10.1109/40.653032
http://doi.ieeecomputersociety.org/10.1109/40.653032
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=604692&isnumber=13287&punumber=4807&k2dockey=604692@ieeecnfs&query=(lenoski)%3Cin%3Emetadata&pos=3
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=604692&isnumber=13287&punumber=4807&k2dockey=604692@ieeecnfs&query=(lenoski)%3Cin%3Emetadata&pos=3
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=604692&isnumber=13287&punumber=4807&k2dockey=604692@ieeecnfs&query=(lenoski)%3Cin%3Emetadata&pos=3
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=604692&isnumber=13287&punumber=4807&k2dockey=604692@ieeecnfs&query=(lenoski)%3Cin%3Emetadata&pos=3
http://www.cs.wisc.edu/~markhill/Misc/asplos96_t3e_comm.pdf
http://www.cs.wisc.edu/~markhill/Misc/asplos96_t3e_comm.pdf
http://www.cs.wisc.edu/~markhill/Misc/asplos96_t3e_comm.pdf
http://www.cs.wisc.edu/~markhill/Misc/asplos96_t3e_comm.pdf
http://www.cs.wisc.edu/~markhill/Misc/asplos96_t3e_comm.pdf
https://str.llnl.gov/str/April05/Seager.html
https://str.llnl.gov/str/April05/Seager.html
https://str.llnl.gov/str/April05/Seager.html

50

Summary

• Thread-level parallelism

• Multiprocessor Systems

• Cache Coherence

– Snoopy

– Scalable

• Flynn Taxonomy

• UMA vs. NUMA

