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CPU, circa 1986

• MIPS R2000, ~“most elegant pipeline ever devised” J. Larus

• Enablers: RISC ISA, pipelining, on-chip cache memory
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Stage Phase Function performed

IF φ1
Translate virtual instr. addr. using TLB

φ2
Access I-cache

RD φ1
Return instruction from I-cache, check tags & 
parity

φ2
Read RF; if branch, generate target

ALU φ1
Start ALU op; if branch, check condition

φ2
Finish ALU op; if ld/st, translate addr

MEM φ1
Access D-cache

φ2
Return data from D-cache, check tags & parity

WB φ1
Write RF

φ2

Source: https://imgtec.com



Iron Law

Processor Performance  =   ---------------
Time

Program

Architecture --> Implementation --> Realization

Compiler Designer      Processor Designer         Chip Designer

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

= X X

(CPI) (cycle time)
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Limitations of Scalar Pipelines

• Scalar upper bound on throughput

– IPC <= 1 or CPI >= 1

• Rigid pipeline stall policy

– One stalled instruction stalls entire pipeline

• Limited hardware parallelism

– Only temporal (across pipeline stages)
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Superscalar Proposal

• Fetch/execute multiple instructions per cycle

• Decouple stages so stalls don’t propagate

• Exploit instruction-level parallelism (ILP)



Limits on Instruction Level 
Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)



High-IPC Processor Evolution
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Desktop/Workstation Market

Scalar RISC 
Pipeline

1980s: 
MIPS
SPARC
Intel 486

2-4 Issue 
In-order

Early 1990s: 
IBM RIOS-I
Intel Pentium

Limited Out-
of-Order

Mid 1990s:
PowerPC 604
Intel P6

Large ROB 
Out-of-Order

2000s:
DEC Alpha 21264
IBM Power4/5
AMD K8

1985 – 2005: 20 years, 100x frequency

Mobile Market

Scalar RISC 
Pipeline

2002:  ARM11

2-4 Issue 
In-order

2005: Cortex A8

Limited Out-
of-Order

2009: Cortex A9  

Large ROB 
Out-of-Order

2011: Cortex A15

2002 – 2011: 10 years, 10x frequency



What Does a High-IPC CPU Do?
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1. Fetch and decode

2. Construct data 
dependence 
graph (DDG)

3. Evaluate DDG

4. Commit changes 
to program state

Source: [Palacharla, Jouppi, Smith, 1996]



A Typical High-IPC Processor
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1. Fetch and Decode

2. Construct DDG

3. Evaluate DDG

4. Commit results



Power Consumption

• Actual computation overwhelmed by 
overhead of aggressive execution pipeline
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ARM Cortex A15 [Source: NVIDIA] Core i7 [Source: Intel]



Lecture Outline

• Evolution of High-IPC Processors

• Main challenges

– Instruction Flow

– Register Data Flow

– Memory Data Flow
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High-IPC Processor
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Instruction Flow

• Challenges:

– Branches: unpredictable

– Branch targets misaligned

– Instruction cache misses

• Solutions

– Prediction and speculation

– High-bandwidth fetch logic

– Nonblocking cache and prefetching

13

Instruction Cache

PC

only 3 instructions fetched

Objective: Fetch multiple instructions per cycle
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I-Cache Organization
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Capacity C = x × y

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝐿 = 𝑥 + 𝑦

→ 𝐿 = 𝑥 +
𝐶

𝑥

→
𝑑𝐿

𝑑𝑥
= 1 −

𝐶

𝑥2
= 0

→ 𝑥 =
2
𝐶

SRAM arrays need to be square to minimize delay



Fetch Alignment
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IBM RIOS-I Fetch Hardware
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𝑁𝑎𝑖𝑣𝑒:
1

4
× 4 +

1

4
× 3+

1

4
× 2+

1

4
× 1= 

2.5 𝑖𝑛𝑠𝑡𝑟

𝑐𝑦𝑐𝑙𝑒

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑:
13

16
× 4 +

1

16
× 3+

1

16
× 2+

1

16
× 1= 

3.625 𝑖𝑛𝑠𝑡𝑟

𝑐𝑦𝑐𝑙𝑒



Disruption of Instruction Flow
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Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch
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Branch Prediction

• Target address generation  Target speculation
– Access register: 

• PC, General purpose register, Link register

– Perform calculation: 
• +/- offset, autoincrement

• Condition resolution  Condition speculation
– Access register:

• Condition code register, General purpose register

– Perform calculation:
• Comparison of data register(s)
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Target Address Generation
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Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

PC-
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Reg.
ind.

Reg.
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Branch Condition Resolution
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Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.
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Branch Instruction Speculation

21

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish
Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)

PC(seq.)Branch
Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

  FA-mux
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Hardware Smith Predictor

• Jim E. Smith.  A Study of Branch Prediction Strategies.  International 
Symposium on Computer Architecture, pages 135-148, May 1981

• Widely employed: Intel Pentium, PowerPC 604, MIPS R10000, etc.
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Branch Address

Branch Prediction

m

2m k-bit  counters

most significant bit

Saturating Counter

Increment/Decrement

Branch Outcome

Updated Counter Value
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Cortex A15: Bi-Mode Predictor

• PHT partitioned into T/NT halves
– Selector chooses source

• Reduces negative interference, since most entries in PHT0 tend 
towards NT, and most entries in PHT1 tend towards T

Branch Address

Global BHR

XOR

PHT0 PHT1

Final Prediction

choice
predictor
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15% of 
A15 Core 
Power!



Branch Target Prediction

• Does not work well for function/procedure returns

• Does not work well for virtual functions, switch statements
24

Branch Address

Branch ...target tag target tag target tag

  =   =   =

OR

Branch Target Buffer

 +

Size of
Instruction

Branch Target

BTB Hit?

Direction
Predictor

not-taken
target

taken-target

0 1
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Branch Speculation

• Leading Speculation
– Done during the Fetch stage

– Based on potential branch instruction(s) in the current fetch group

• Trailing Confirmation
– Done during the Branch Execute stage

– Based on the next Branch instruction to finish execution

25

NT T NT T NT TNT T

NT T NT T

NT T (TAG 1)

(TAG 2)

(TAG 3)
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Branch Speculation

• Start new correct path

– Must remember the alternate (non-predicted) path

• Eliminate incorrect path

– Must ensure that the mis-speculated instructions 
produce no side effects

26

NT T NT T NT TNT T

NT T
NT

T

NT T

(TAG 2)

(TAG 3) (TAG 1)
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Mis-speculation Recovery

• Start new correct path

1. Update PC with computed branch target (if predicted 
NT)

2. Update PC with sequential instruction address (if 
predicted T)

3. Can begin speculation again at next branch

• Eliminate incorrect path

1. Use tag(s) to deallocate resources occupied by 
speculative instructions

2. Invalidate all instructions in the decode and dispatch 
buffers, as well as those in reservation stations
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Parallel Decode

• Primary Tasks

– Identify individual instructions (!)

– Determine instruction types

– Determine dependences between instructions

• Two important factors

– Instruction set architecture

– Pipeline width
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Intel P6 Fetch/Decode
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Dependence Checking

• Trailing instructions in fetch group

– Check for dependence on leading instructions

30

Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1

?= ?= ?= ?= ?= ?=

?= ?= ?= ?=

?= ?=

Mikko Lipasti-University of Wisconsin



Summary: Instruction Flow

• Fetch group alignment

• Target address generation
– Branch target buffer

• Branch condition prediction

• Speculative execution
– Tagging/tracking instructions
– Recovering from mispredicted branches

• Decoding in parallel
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High-IPC Processor
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Register Data Flow
• Parallel pipelines

– Centralized instruction fetch

– Centralized instruction decode

• Diversified execution pipelines

– Distributed instruction execution

• Data dependence linking

– Register renaming to resolve true/false 
dependences

– Issue logic to support out-of-order issue

– Reorder buffer to maintain precise state
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Issue Queues and Execution Lanes

34

Source: theregister.co.uk

ARM Cortex A15
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Program Data Dependences

• True dependence (RAW)
– j cannot execute until i

produces its result

• Anti-dependence (WAR)
– j cannot write its result until i

has read its sources

• Output dependence (WAW)
– j cannot write its result until i

has written its result

35

 )()( jRiD

 )()( jDiR

 )()( jDiD
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Register Data Dependences

• Program data dependences cause hazards
– True dependences (RAW)

– Antidependences (WAR)

– Output dependences (WAW)

• When are registers read and written?
– Out of program order to extract maximum ILP

– Hence, any and all of these can occur

• Solution to all three: register renaming

36Mikko Lipasti-University of Wisconsin



Register Renaming: WAR/WAW

• Widely employed (Core i7, Cortex A15, …)

• Resolving WAR/WAW:

– Each register write gets unique “rename register”

– Writes are committed in program order at Writeback

– WAR and WAW are not an issue
• All updates to “architected state” delayed till writeback

• Writeback stage always later than read stage

– Reorder Buffer (ROB) enforces in-order writeback

37

Add R3 <= … P32 <= …

Sub R4 <= … P33 <= …

And R3 <= … P35 <= …
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Register Renaming: RAW

• In order, at dispatch:

– Source registers checked to see if “in flight”

• Register map table keeps track of this

• If not in flight, can be read from the register file

• If in flight, look up “rename register” tag (IOU)

– Then, allocate new register for register write
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Add R3 <= R2 + R1 P32 <= P2 + P1

Sub R4 <= R3 + R1 P33 <= P32 - P1

And R3 <= R4 & R2 P35 <= P33 & P2
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Register Renaming: RAW

• Advance instruction to instruction queue

– Wait for rename register tag to trigger issue

• Issue queue/reservation station enables out-
of-order issue

– Newer instructions can bypass stalled instructions

39
Source: theregister.co.uk
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Instruction scheduling

• A process of mapping a series of instructions into 
execution resources

– Decides when and where an instruction is executed

 Data dependence graph

1

2 3 4

5 6

FU0 FU1

n

n+1

n+2

n+3

1

2 3

5 4

6

 Mapped to two FUs
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Instruction scheduling

• A set of wakeup and select operations
– Wakeup

• Broadcasts the tags of parent instructions selected

• Dependent instruction gets matching tags, determines if source 
operands are ready

• Resolves true data dependences

– Select
• Picks instructions to issue among a pool of ready instructions

• Resolves resource conflicts
– Issue bandwidth

– Limited number of functional units / memory ports
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Scheduling loop

• Basic wakeup and select operations

==
== OROR

readyL tagL readyRtagR

==
== OROR

readyL tagL readyRtagR

tag W tag 1

…

… …

ready - request
request n

grant n

grant 0

request 0

grant 1

request 1

……

selected

issue

to FU

broadcast the tag

of the selected inst

Select logic Wakeup logic

scheduling

loop
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Wakeup and Select

FU0 FU1

n

n+1

n+2

n+3

1

2 3

5 4

6

Select 1

Wakeup 2,3,4

Wakeup /

select

Select 2, 3

Wakeup 5, 6

Select 4, 5

Wakeup 6

Select 6

Ready inst

to issue

1

2, 3, 4

4, 5

6

1

2 3 4

5 6
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High-IPC Processor
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Memory Data Flow

• Resolve WAR/WAW/RAW memory 
dependences

– MEM stage can occur out of order

• Provide high bandwidth to memory hierarchy

– Non-blocking caches
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Memory Data 
Dependences

• WAR/WAW: stores commit in order
– Hazards not possible. 

• RAW: loads must check pending stores
– Store queue keeps track of pending stores
– Loads check against these addresses
– Similar to register bypass logic
– Comparators are 64 bits wide
– Must consider position (age) of loads and stores

• Major source of complexity in modern 
designs
– Store queue lookup is position-based
– What if store address is not yet known?

46

Store

Queue

Load/Store RS

Agen

Reorder Buffer

Mem
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Optimizing Load/Store Disambiguation

• Non-speculative load/store disambiguation

1. Loads wait for addresses of all prior stores

2. Full address comparison

3. Bypass if no match, forward if match

• (1) can limit performance:

load r5,MEM[r3]   cache miss

store r7, MEM[r5]  RAW for agen, stalled

…

load r8, MEM[r9]  independent load stalled



Speculative Disambiguation

• What if aliases are rare?
1. Loads don’t wait for addresses of 

all prior stores

2. Full address comparison of stores 
that are ready

3. Bypass if no match, forward if 
match

4. Check all store addresses when 
they commit

– No matching loads – speculation 
was correct

– Matching unbypassed load –
incorrect speculation

5. Replay starting from incorrect 
load

Load

Queue

Store

Queue

Load/Store RS

Agen

Reorder Buffer

Mem



Speculative Disambiguation: Load Bypass

Load

Queue

Store

Queue

Agen

Reorder Buffer

Mem

i1:  st R3, MEM[R8]: ??

i2:  ld  R9, MEM[R4]: ??

i1:  st R3, MEM[R8]: x800Ai2:  ld  R9, MEM[R4]: x400A

• i1  and i2 issue in program order

• i2 checks store queue (no match)



Speculative Disambiguation: Load Forward

Load

Queue

Store

Queue

Agen

Reorder Buffer

Mem

i1:  st R3, MEM[R8]: ??

i2:  ld  R9, MEM[R4]: ??

i1:  st R3, MEM[R8]: x800Ai2:  ld  R9, MEM[R4]: x800A

• i1  and i2 issue in program order

• i2 checks store queue (match=>forward)



Speculative Disambiguation: Safe Speculation

Load

Queue

Store

Queue

Agen

Reorder Buffer

Mem

i1:  st R3, MEM[R8]: ??

i2:  ld  R9, MEM[R4]: ??

i1:  st R3, MEM[R8]: x800Ai2:  ld  R9, MEM[R4]: x400C

• i1 and i2 issue out of program order
• i1 checks load queue at commit (no match)



Speculative Disambiguation: Violation

Load

Queue

Store

Queue

Agen

Reorder Buffer

Mem

i1:  st R3, MEM[R8]: ??

i2:  ld  R9, MEM[R4]: ??

i1:  st R3, MEM[R8]: x800Ai2:  ld  R9, MEM[R4]: x800A

• i1 and i2 issue out of program order
• i1 checks load queue at commit (match)

– i2 marked for replay



Increasing Memory Bandwidth
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Dispatch Buffer
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Reg. File Ren. Reg.

Reg. Write Back
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Point

Load/

Store
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Complete

Retire

Store Buff.

Load/

Store

Missed
 loads

Expensive 
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True Multiporting of SRAM

“Word” Lines
-select a row

“Bit” Lines
-carry data in/out
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Increasing Memory Bandwidth
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Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire

Store Buff.

Load/
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Missed
 loads

Complex, 
concurrent 

FSMs
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Address Victim LdTag State V[0:3] DataAddress Victim LdTag State V[0:3] DataAddress Victim LdTag State V[0:3] Data

Miss Status Handling Register

• Each MSHR entry keeps track of:

– Address: miss address

– Victim: set/way to replace

– LdTag: which load (s) to wake up 

– State: coherence state, fill status

– V[0:3]: subline valid bits

– Data: block data to be filled into cache
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Address Victim LdTag State V[0:3] Data



Coherent Memory Interface



Coherent Memory Interface
• Load Queue

– Tracks inflight loads for aliasing, coherence

• Store Queue

– Defers stores until commit, tracks aliasing

• Storethrough Queue or Write Buffer or Store Buffer

– Defers stores, coalesces writes, must handle RAW

• MSHR

– Tracks outstanding misses, enables lockup-free caches [Kroft ISCA 91]

• Snoop Queue

– Buffers, tracks incoming requests from coherent I/O, other processors

• Fill Buffer

– Works with MSHR to hold incoming partial lines

• Writeback Buffer

– Defers writeback of evicted line (demand miss handled first)



Split Transaction Bus

• “Packet switched” vs. “circuit switched”
• Release bus after request issued
• Allow multiple concurrent requests to overlap memory latency
• Complicates control, arbitration, and coherence protocol

– Transient states for pending blocks (e.g. “req. issued but not completed”)



Memory Consistency

• How are memory references from different processors interleaved?
• If this is not well-specified, synchronization becomes difficult or even 

impossible
– ISA must specify consistency model

• Common example using Dekker’s algorithm for synchronization
– If load reordered ahead of store (as we assume for a baseline OOO CPU)
– Both Proc0 and Proc1 enter critical section, since both observe that other’s 

lock variable (A/B) is not set
• If consistency model allows loads to execute ahead of stores, Dekker’s 

algorithm no longer works
– Common ISAs allow this: IA-32, PowerPC, SPARC, Alpha



Sequential Consistency [Lamport 1979]

• Processors treated as if they are interleaved processes on a single 
time-shared CPU

• All references must fit into a total global order or interleaving that 
does not violate any CPU’s program order
– Otherwise sequential consistency not maintained

• Now Dekker’s algorithm will work
• Appears to preclude any OOO memory references

– Hence precludes any real benefit from OOO CPUs



High-Performance Sequential Consistency

• Coherent caches isolate CPUs if no sharing is 
occurring

– Absence of coherence activity means CPU is free to 
reorder references

• Still have to order references with respect to 
misses and other coherence activity (snoops)

• Key: use speculation

– Reorder references speculatively

– Track which addresses were touched speculatively

– Force replay (in order execution) of such references 
that collide with coherence activity (snoops)



High-Performance Sequential Consistency

• Load queue records all speculative loads
• Bus writes/upgrades are checked against LQ
• Any matching load gets marked for replay
• At commit, loads are checked and replayed if necessary

– Results in machine flush, since load-dependent ops must also replay
• Practically, conflicts are rare, so expensive flush is OK



Maintaining Precise State

• Out-of-order execution

– ALU instructions

– Load/store instructions

• In-order completion/retirement

– Precise exceptions

• Solutions

– Reorder buffer retires instructions in order

– Store queue retires stores in order

– Exceptions can be handled at any instruction 
boundary by reconstructing state out of ROB/SQ
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Summary: A High-IPC Processor
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Landscape of Microprocessor Families
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Review of 752 
 Iron law
 Superscalar challenges

 Instruction flow
Register data flow
Memory Dataflow

Modern memory interface
• What was not covered

– Memory hierarchy (review later)
– Virtual memory
– Power & reliability
– Many implementation/design details
– Etc.
– Multithreading (coming up later)


