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Lecture 5 Outline 

• Main Memory and Cache Review 

• Caches and Replacement Policies 

• Cache Coherence 

– Coherence States 

– Snoopy bus-based Invalidate Protocols 

– Invalidate protocol optimizations 

– Update Protocols (Dragon/Firefly) 

– Directory protocols 

– Implementation issues 
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Main Memory 

• DRAM chips 

• Memory organization 

– Interleaving 

–Banking 

• Memory controller design 
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DRAM Chip Organization 

• Optimized for density, not speed 

• Data stored as charge in capacitor 

• Discharge on reads => destructive reads 

• Charge leaks over time 

– refresh every 64ms 
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DRAM Chip Organization 

• Current generation DRAM 

– 8Gbit @25nm  

– 266 MHz synchronous interface 

– Data clock 4x (1066MHz), double-data 
rate so 2133 MT/s 
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 Address pins are time-multiplexed 

– Row address strobe (RAS) 

– Column address strobe (CAS) 
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DRAM Chip Organization 

• New RAS results in: 

– Bitline precharge 

– Row decode, sense 

– Row buffer write (up to 8K) 

 New CAS 

– Read from row buffer 

– Much faster (3x) 

 Streaming row accesses desirable 
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Simple Main Memory 

• Consider these parameters: 

– 10 cycles to send address 

– 60 cycles to access each word 

– 10 cycle to send word back 

• Miss penalty for a 4-word block 

– (10 + 60 + 10) x 4 = 320 

• How can we speed this up? 
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Wider(Parallel) Main Memory 

• Make memory wider 

– Read out all words in parallel 

• Memory parameters 

– 10 cycle to send address 

– 60 to access a double word 

– 10 cycle to send it back 

• Miss penalty for 4-word block: 2x(10+60+10) = 160 

• Costs 

– Wider bus 

– Larger minimum expansion unit (e.g. paired DIMMs) 
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Interleaved Main Memory 

• Each bank has 

– Private address lines 

– Private data lines 

– Private control lines (read/write) 

Byte in Word 

Word in Doubleword 

Bank 

Doubleword in bank 

Bank 0 

Bank2 

Bank 1 

Bank 3 

 Break memory into M banks 

– Word A is in A mod M at A div M 

 Banks can operate concurrently and 
independently 
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Interleaved and Parallel Organization 
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Interleaved Memory Examples 
Ai = address to bank i 

Ti = data transfer 
– Unit Stride: A0 T0bank 0  access

A1 T1bank 1 access

A2 T2bank 2 access

A3 T3bank 3 access

• Stride 3: A0 T0bank 0  access

A3 T1bank 3 access

A2 T2bank 2 access

A1 T3bank 1 access
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DDR SDRAM Control 

Idle Active

Bank Precharge
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 Raise level of abstraction: commands 
• Activate row 

Read row into row buffer 

• Column access 

Read data from addressed row 

• Bank Precharge 

Get ready for new row access 
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DDR SDRAM Timing 
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Constructing a Memory System 

• Combine chips in parallel to increase access width 
– E.g.  4  16-bit wide DRAMs for a 64-bit parallel access 

– DIMM – Dual Inline Memory Module 

• Combine DIMMs to form multiple ranks 

• Attach a number to DIMMs to a memory channel 
– Memory Controller manages a channel (or two lock-step channels) 

• Interleave patterns: 
– Rank, Row, Bank, Column, [byte] 

– Row, Rank, Bank, Column, [byte] 

•Better dispersion of addresses 

•Works better with power-of-two ranks 
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Memory Controller and Channel 
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MP Memory Systems 

• Memory controller can be centralized 

– Mostly in smaller systems 

• More often distributed in larger (Multi-CMP) MP systems 
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Memory Controllers 

• Contains buffering 

– In both directions 

• Scheduler’s manage 
resources 

– Channel and banks 
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Resource Scheduling 
• An interesting optimization problem 

• Example: 

– Precharge: 3 cycles 

– Row activate: 3 cycles 

– Column access: 1 cycle 

– FR-FCFS: 20 cycles 

– StrictFIFO: 56 cycles 
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DDR  SDRAM Policies 

• Goal: try to maximize requests to an open row (page) 

• Close row policy 

– Always close row, hides precharge penalty 

– Lost opportunity if next access to same row 

• Open row policy 

– Leave row open 

– If an access to a different row, then penalty for precharge 

• Also performance issues related to rank interleaving 

– Better dispersion of addresses 
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Study by Natarajan et al. 
[C. Natarajan, B. Christenson, and F. Briggs, “A Study of Performance Impact of Memory 

Controller Features in Multi-Processor Server Environment,” Proc. of the 3rd Workshop on 
Memory Perf. Issues, June 2004] 

• Intel Servers 

– IA-32 : In-order front-side bus to processor 

– IPF: Out-of-order front-side bus to processor 

• Use server Benchmarks 

• Open row (page) policy used in desktop systems 

– Performs poorly in Server systems 

• “Open-Policy2-0” works much better 

– Leave open only until there is an idle cycle for the bank; 
then close 
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Results  #3 
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Memory Scheduling Contest 

• http://www.cs.utah.edu/~rajeev/jwac12/ 

• Clean, simple, infrastructure 

• Traces provided 

• Very easy to make fair comparisons 

• Comes with 6 schedulers 

• Also targets power-down modes (not just page 
open/close scheduling) 

• Three tracks: 

1. Delay (or Performance),  

2. Energy-Delay Product (EDP) 

3. Performance-Fairness Product (PFP) 

http://www.cs.utah.edu/~rajeev/jwac12/
http://www.cs.utah.edu/~rajeev/jwac12/


Future: Hybrid Memory Cube 

• Micron proposal [Pawlowski, Hot Chips 11] 

– www.hybridmemorycube.org 23 



Hybrid Memory Cube MCM 

• Micron proposal [Pawlowski, Hot Chips 11] 

– www.hybridmemorycube.org 
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Network of DRAM 

• Traditional DRAM: star topology 

• HMC: mesh, etc. are feasible 
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Hybrid Memory Cube 

• High-speed logic segregated in chip stack 

• 3D TSV for bandwidth 26 



High Bandwidth Memory (HBM) 

• High-speed serial links vs. 2.5D silicon interposer 

• Commercialized, HBM2/HBM3 on the way 
27 
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Future: Resistive memory 
• PCM: store bit in phase state of material 

• Alternatives: 
– Memristor (HP Labs) 

– STT-MRAM 

• Nonvolatile 

• Dense: crosspoint architecture (no access device) 

• Relatively fast for read 

• Very slow for write (also high power) 

• Write endurance often limited 
– Write leveling (also done for flash) 

– Avoid redundant writes (read, cmp, write) 

– Fix individual bit errors (write, read, cmp, fix) 
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Memory Hierarchy 
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• Need lots of bandwidth 
 
 
 
 

• Need lots of storage 
– 64MB (minimum) to multiple TB 

• Must be cheap per bit 
– (TB x anything) is a lot of money! 

• These requirements seem incompatible 

Why Memory Hierarchy? 
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Why Memory Hierarchy? 

• Fast and small memories 
– Enable quick access (fast cycle time) 

– Enable lots of bandwidth (1+ L/S/I-fetch/cycle) 

• Slower larger memories 
– Capture larger share of memory 

– Still relatively fast 

• Slow huge memories 
– Hold rarely-needed state 

– Needed for correctness 

• All together: provide appearance of large, fast 
memory with cost of cheap, slow memory 
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Why Does a Hierarchy Work? 

• Locality of reference 
– Temporal locality 

• Reference same memory location repeatedly 

– Spatial locality 
• Reference near neighbors around the same time 

• Empirically observed 
– Significant! 

– Even small local storage (8KB) often satisfies >90% 
of references to multi-MB data set 
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Memory Hierarchy 

CPU 

I & D L1 Cache 

Shared L2 Cache 

Main Memory 

Disk 

Temporal Locality 
•Keep recently referenced 
items at higher levels 
•Future references satisfied 
quickly 

Spatial Locality 
•Bring neighbors of recently 
referenced to higher levels 
•Future references satisfied 
quickly 
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Four Burning Questions 

• These are: 
– Placement 

• Where can a block of memory go? 

– Identification 
• How do I find a block of memory? 

– Replacement 
• How do I make space for new blocks? 

– Write Policy 
• How do I propagate changes? 

• Consider these for caches 
– Built from SRAM, EDRAM, stacked DRAM 
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Placement 

Memory 
Type 

Placement Comments 

Registers Anywhere; 
Int, FP, SPR 

Compiler/programmer 
manages 

Cache  

(SRAM) 

Fixed in H/W Direct-mapped, 

set-associative,  

fully-associative 

DRAM Anywhere O/S manages 

Disk Anywhere O/S manages 

HUH? 
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Placement 

• Address Range 

– Exceeds cache capacity 

• Map address to finite capacity 

– Called a hash 

– Usually just masks high-order bits 

• Direct-mapped 

– Block can only exist in one location 

– Hash collisions cause problems 

SRAM Cache 
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Placement 

• Fully-associative 
– Block can exist anywhere 

– No more hash collisions 

• Identification 
– How do I know I have the right 

block? 

– Called a tag check 
• Must store address tags 

• Compare against address 

• Expensive! 
– Tag & comparator per block 

SRAM Cache 
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Address 

Data Out 

Offset 

32-bit Address 

Offset 

Tag 
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Tag 
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Placement 

• Set-associative 

– Block can be in a 
locations 

– Hash collisions:  
• a still OK 

• Identification 

– Still perform tag check 

– However, only a in 
parallel 

SRAM Cache 
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Offset 
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Placement and Identification 

• Consider: <BS=block size, S=sets, B=blocks> 
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B) 

– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4) 

– <64,1,64>: o=6, i=0, t=26: fully associative (S=1) 

• Total size = BS x B = BS x S x (B/S) 

Offset 

32-bit Address 

Tag Index 

Portion Length Purpose 

Offset o=log2(block size) Select word within block 

Index i=log2(number of sets) Select set of blocks 

Tag t=32 - o - i ID block within set 
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Replacement 

• Cache has finite size 

– What do we do when it is full? 

• Analogy: desktop full? 

– Move books to bookshelf to make room 

• Same idea: 

– Move blocks to next level of cache 
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Replacement 

• How do we choose victim? 
– Verbs: Victimize, evict, replace, cast out 

• Several policies are possible 
– FIFO (first-in-first-out) 

– LRU (least recently used) 

– NMRU (not most recently used) 

– Pseudo-random (yes, really!) 

• Pick victim within set where a = associativity 
– If a <= 2, LRU is cheap and easy (1 bit) 

– If a > 2, it gets harder 

– Pseudo-random works pretty well for caches 
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Write Policy 

• Memory hierarchy 

– 2 or more copies of same block 

• Main memory and/or disk 

• Caches 

• What to do on a write? 

– Eventually, all copies must be changed 

– Write must propagate to all levels 

• And other processor’s caches (later) 

42 Mikko Lipasti-University of Wisconsin 



Write Policy 

• Easiest policy: write-through 
• Every write propagates directly through hierarchy 

– Write in L1, L2, memory, disk (?!?) 

• Why is this a bad idea? 
– Very high bandwidth requirement 

– Remember, large memories are slow 

• Popular in real systems only to the L2 
– Every write updates L1 and L2 

– Beyond L2, use write-back policy 
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Write Policy 

• Most widely used: write-back 
• Maintain state of each line in a cache 

– Invalid – not present in the cache 

– Clean – present, but not written (unmodified) 

– Dirty – present and written (modified) 

• Store state in tag array, next to address tag 
– Mark dirty bit on a write 

• On eviction, check dirty bit 
– If set, write back dirty line to next level 

– Called a writeback or castout 
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Write Policy 

• Complications of write-back policy 
– Stale copies lower in the hierarchy 

– Must always check higher level for dirty copies before 
accessing copy in a lower level 

• Not a big problem in uniprocessors 
– In multiprocessors: the cache coherence problem 

• I/O devices that use DMA (direct memory access) 
can cause problems even in uniprocessors 
– Called coherent I/O 

– Must check caches for dirty copies before reading main 
memory 
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Cache Example 

Tag0 Tag1 LRU 

0 

0 

0 

0 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

0 

0 

10 1 

0 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

0 

0 

10 1 

0 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

0 

0 

10 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

10 1 

0 

10 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Tag Array 

50 Mikko Lipasti-University of Wisconsin 



Cache Example 

Tag0 Tag1 LRU 

10 11 0 

0 

10 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

01 11 1 

0 

10 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Load 0x11 010001 0/0 (lru) Miss/Evict 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

01 11 1 

0 

10 d 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Load 0x11 010001 0/0 (lru) Miss/Evict 

Store 0x29 101001 2/0 Hit/Dirty 

Tag Array 
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Lecture 5 Outline 

• Main Memory and Cache Review 

• Caches and Replacement Policies 

• Cache Coherence 

– Coherence States 

– Snoopy bus-based Invalidate Protocols 

– Invalidate protocol optimizations 

– Update Protocols (Dragon/Firefly) 

– Directory protocols 

– Implementation issues 
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Cache Misses and Performance 

• Miss penalty 
– Detect miss: 1 or more cycles 

– Find victim (replace block): 1 or more cycles 
• Write back if dirty 

– Request block from next level: several cycles 
• May need to find line from one of many caches (coherence) 

– Transfer block from next level: several cycles 
• (block size) / (bus width) 

– Fill block into data array, update tag array: 1+ cycles 

– Resume execution 

• In practice: 6 cycles to 100s of cycles 
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Cache Miss Rate 

• Determined by: 

– Program characteristics 

• Temporal locality 

• Spatial locality 

– Cache organization 

• Block size, associativity, number of sets 
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Improving Locality 

• Instruction text placement 

– Profile program, place unreferenced or rarely 
referenced paths “elsewhere” 

• Maximize temporal locality 

– Eliminate taken branches 

• Fall-through path has spatial locality 
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Improving Locality 

• Data placement, access order 
– Arrays: “block” loops to access subarray that fits into cache 

• Maximize temporal locality 

– Structures: pack commonly-accessed fields together 
• Maximize spatial, temporal locality 

– Trees, linked lists: allocate in usual reference order 
• Heap manager usually allocates sequential addresses 

• Maximize spatial locality 

• Hard problem, not easy to automate: 
– C/C++ disallows rearranging structure fields 

– OK in Java 
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Software Restructuring 
• If column-major (Fortran) 

– x[i+1, j] follows x [i,j] in memory 

– x[i,j+1] long after x[i,j] in memory 

• Poor code 

for i = 1, rows 

   for j = 1, columns 

      sum = sum + x[i,j] 

• Conversely, if row-major (C/C++) 

• Poor code 

for j = 1, columns 

   for i = 1, rows 

      sum = sum + x[i,j] 
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Contiguous addresses 

Column Major 

Row Major 
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Software Restructuring 
• Better column-major code 

for j = 1, columns 

   for i = 1, rows 

      sum = sum + x[i,j] 

• Optimizations - need to check if it 
is valid to do them 

– Loop interchange (used above) 

– Merging arrays 

– Loop fusion 

– Blocking 
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Cache Miss Rates: 3 C’s [Hill] 
• Compulsory miss 

– First-ever reference to a given block of memory 

– Cold misses = mc : number of misses for FA infinite cache 

• Capacity 

– Working set exceeds cache capacity 

– Useful blocks (with future references) displaced 

– Capacity misses = mf - mc : add’l misses for finite FA cache 

• Conflict 

– Placement restrictions (not fully-associative) cause useful 
blocks to be displaced 

– Think of as capacity within set 

– Conflict misses = ma - mf : add’l misses in actual cache 
61 Mikko Lipasti-University of Wisconsin 



Cache Miss Rate Effects 

• Number of blocks (sets x associativity) 
– Bigger is better: fewer conflicts, greater capacity 

• Associativity 
– Higher associativity reduces conflicts 

– Very little benefit beyond 8-way set-associative 

• Block size 
– Larger blocks exploit spatial locality 

– Usually: miss rates improve until 64B-256B 

– 512B or more miss rates get worse 
• Larger blocks less efficient: more capacity misses 

• Fewer placement choices: more conflict misses 
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Cache Miss Rate 

• Subtle tradeoffs between cache organization 
parameters 
– Large blocks reduce compulsory misses but increase 

miss penalty 
• #compulsory ~= (working set) / (block size) 
• #transfers = (block size)/(bus width) 

– Large blocks increase conflict misses 
• #blocks = (cache size) / (block size) 

– Associativity reduces conflict misses 
– Associativity increases access time 

• Can associative cache ever have higher miss rate 
than direct-mapped cache of same size? 
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Cache Miss Rates: 3 C’s 

• Vary size and associativity 
– Compulsory misses are constant 
– Capacity and conflict misses are reduced 
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Cache Miss Rates: 3 C’s 

• Vary size and block size 
– Compulsory misses drop with increased block size 
– Capacity and conflict can increase with larger blocks 
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Multilevel Caches 

• Ubiquitous in high-performance processors 

– Gap between L1 (core frequency) and main memory too high 

– Level 2 usually on chip, level 3 on or off-chip, level 4 off chip 

• Inclusion in multilevel caches 

– Multi-level inclusion holds if L2 cache is superset of L1 

– Can handle virtual address synonyms 

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop 

– Makes L1 writes simpler 

• For both write-through and write-back 
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Multilevel Inclusion 

• Example: local LRU not sufficient to guarantee 
inclusion 

– Assume L1 holds two and L2 holds three blocks 

– Both use local LRU 

• Final state: L1 contains 1, L2 does not 

– Inclusion not maintained 

• Different block sizes also complicate inclusion 

P 
1 

4 

2 

3 

4 

1,2,1,3,1,4 1,2,3,4 
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Multilevel Inclusion 

• Inclusion takes effort to maintain 

– Make L2 cache have bits or pointers giving L1 contents 

– Invalidate from L1 before replacing from L2 

– In example, removing 1 from L2 also removes it from L1 

• Number of pointers per L2 block 

– L2 blocksize/L1 blocksize 

• Supplemental reading: [Wang, Baer, Levy ISCA 1989] 

P 
1 

4 

2 

3 

4 

1,2,1,3,1,4 1,2,3,4 
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Multilevel Miss Rates 

• Miss rates of lower level caches 

– Affected by upper level filtering effect 

– LRU becomes LRM, since “use” is “miss” 

– Can affect miss rates, though usually not important 

• Miss rates reported as: 

– Miss per instruction 

– Global miss rate 

– Local miss rate 

– “Solo” miss rate 

• L2 cache sees all references (unfiltered by L1) 
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Cache Design: Four Key Issues 

• These are: 
– Placement 

• Where can a block of memory go? 

– Identification 
• How do I find a block of memory? 

– Replacement 
• How do I make space for new blocks? 

– Write Policy 
• How do I propagate changes? 

• Consider these for caches 
– Usually SRAM 

• Also apply to main memory, disks 
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Replacement 

• Cache has finite size 

– What do we do when it is full? 

• Analogy: desktop full? 

– Move books to bookshelf to make room 

– Bookshelf full? Move least-used to library 

– Etc. 

• Same idea: 

– Move blocks to next level of cache 
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Replacement 

• How do we choose victim? 
– Verbs: Victimize, evict, replace, cast out 

• Many policies are possible 
– FIFO (first-in-first-out) 

– LRU (least recently used), pseudo-LRU 

– LFU (least frequently used) 

– NMRU (not most recently used) 

– NRU 

– Pseudo-random (yes, really!) 

– Optimal 

– Etc 
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Optimal Replacement Policy? 
[Belady, IBM Systems Journal, 1966] 

• Evict block with longest reuse distance 
– i.e. next reference to block is farthest in future 
– Requires knowledge of the future! 

• Can’t build it, but can model it with trace 
– Process trace in reverse 
– [Sugumar&Abraham] describe how to do this in 

one pass over the trace with some lookahead 
(Cheetah simulator) 

• Useful, since it reveals opportunity 
– (X,A,B,C,D,X): LRU 4-way SA $, 2nd X will miss 



Least-Recently Used 

• For a=2, LRU is equivalent to NMRU 

– Single bit per set indicates LRU/MRU 

– Set/clear on each access 

• For a>2, LRU is difficult/expensive 

– Timestamps? How many bits? 

• Must find min timestamp on each eviction 

– Sorted list? Re-sort on every access? 

• List overhead: log2(a) bits /block 

– Shift register implementation 
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Practical Pseudo-LRU 

• Rather than true LRU, use binary tree 

• Each node records which half is older/newer 

• Update nodes on each reference 

• Follow older pointers to find LRU victim 
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Practical Pseudo-LRU In Action 
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J 

F 

C 

B 

X 

Y 

A 

Z 

J Y X Z B C F A 

011: PLRU 
Block B is here 

110: MRU 
block is here 

Z < A Y < X B < C J < F 

A > X C < F 

A > F 

B C F A 

J 

Y X 

Z 

Partial Order Encoded in Tree: 
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Practical Pseudo-LRU 

• Binary tree encodes PLRU partial order 

– At each level point to LRU half of subtree 

• Each access: flip nodes along path to block 

• Eviction: follow LRU path 

• Overhead: (a-1)/a bits per block 77 
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True LRU Shortcomings 
• Streaming data/scans: x0, x1, …, xn 

– Effectively no temporal reuse 

• Thrashing: reuse distance > a 

– Temporal reuse exists but LRU fails 

• All blocks march from MRU to LRU 

– Other conflicting blocks are pushed out 

• For n>a no blocks remain after scan/thrash 

– Incur many conflict misses after scan ends 

• Pseudo-LRU sometimes helps a little bit 
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Segmented or Protected LRU 
[I/O: Karedla, Love, Wherry, IEEE Computer 27(3), 1994] 

[Cache: Wilkerson, Wade, US Patent 6393525, 1999] 

• Partition LRU list into filter and reuse lists 

• On insert, block goes into filter list 

• On reuse (hit), block promoted into reuse list 

• Provides scan & some thrash resistance 

– Blocks without reuse get evicted quickly 

– Blocks with reuse are protected from scan/thrash 
blocks 

• No storage overhead, but LRU update slightly 
more complicated 
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Protected LRU: LIP 
• Simplified variant of this idea: LIP 

– Qureshi et al. ISCA 2007 

• Insert new blocks into LRU position, not 
MRU position 

– Filter list of size 1, reuse list of size (a-1) 

• Do this adaptively: DIP 

• Use set dueling to decide LIP vs. LRU 

– 1 (or a few) set uses LIP vs. 1 that uses LRU 

– Compare hit rate for sets 

– Set policy for all other sets to match best set 
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Not Recently Used (NRU) 
• Keep NRU state in 1 bit/block 

– Bit is set to 0 when installed (assume reuse) 

– Bit is set to 0 when referenced (reuse observed) 

– Evictions favor NRU=1 blocks 

– If all blocks are NRU=0 

• Eviction forces all blocks in set to NRU=1 

• Picks one as victim (can be pseudo-random, or rotating, or fixed left-
to-right) 

• Simple, similar to virtual memory clock algorithm 

• Provides some scan and thrash resistance 
– Relies on “randomizing”  evictions rather than strict LRU order 

• Used by Intel Itanium, Sparc T2 
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Least Frequently Used 

• Counter per block, incremented on reference 

• Evictions choose lowest count 

– Logic not trivial (a2 comparison/sort) 

• Storage overhead 

– 1 bit per block: same as NRU 

– How many bits are helpful? 

Mikko Lipasti-University of Wisconsin 82 



Mikko Lipasti-University of Wisconsin 83 

Pitfall: Cache Filtering Effect 

 Upper level caches (L1, L2) hide reference 
stream from lower level caches 

 Blocks with “no reuse”  @ LLC could be very hot 
(never evicted from L1/L2) 

 Evicting from LLC often causes L1/L2 eviction 
(due to inclusion) 

 Could hurt performance even if LLC miss rate 
improves 



84 

Replacement Policy Summary 
 Replacement policies affect capacity and conflict 

misses 

 Policies covered: 

 Belady’s optimal replacement 

 Least-recently used (LRU) 

 Practical pseudo-LRU (tree LRU) 

 Protected LRU 

 LIP/DIP variant 

 Set dueling to dynamically select policy 

 Not-recently-used (NRU) or clock algorithm 

 Least frequently used (LFU) 
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Cache Replacement Championships 

• First: held at ISCA 2010 

– http://www.jilp.org/jwac-1 

• Second: to be held at ISCA 2017 

– http://crc2.ece.tamu.edu 

• Good option for a course project 

– Focus on MP cases 
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Lecture 5 Outline 

• Main Memory and Cache Review 

• Caches and Replacement Policies 

• Cache Coherence 

– Coherence States 

– Snoopy bus-based Invalidate Protocols 

– Invalidate protocol optimizations 

– Update Protocols (Dragon/Firefly) 

– Directory protocols 

– Implementation issues 
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Cache Coherence Problem 

P0 P1 
Load A 

A 0 

Load A 

A 0 

Store A<= 1 

1 

Load A 

Memory 
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Cache Coherence Problem 

P0 P1 
Load A 

A 0 

Load A 

A 0 

Store A<= 1 

Memory 

1 

Load A 

A 1 
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Possible Causes of Incoherence 
• Sharing of writeable data 

– Cause most commonly considered 

• Process migration 

– Can occur even if independent jobs are executing 

• I/O 

– Often fixed via O/S cache flushes 
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Cache Coherence 
• Informally, with coherent caches: accesses to a 

memory location appear to occur 
simultaneously in all copies of the memory 
location 

   “copies”  caches 

• Cache coherence suggests an absolute time 
scale -- this is not necessary 

–What is required is the "appearance" of 
coherence... not absolute coherence 

–E.g. temporary incoherence between memory and 
a write-back cache may be OK. 
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Update vs. 
Invalidation 

Protocols 

• Coherent Shared 
Memory 
– All processors see 

the effects of 
others’ writes 

• How/when writes 
are propagated 
– Determine by 

coherence 
protocol 
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Global Coherence States 

• A memory line can be present (valid) in any of the caches and/or 
memory 

• Represent global state with an N+1 element vector 

– First N components => cache states (valid/invalid) 

– N+1st component => memory state (valid/invalid)  

• Example:  

 Line A: <1,1,0,1> 

 Line B: <1,0,0,0> 

 Line C: <0,0,0,1> 

 

Memory 

Cache 0 Cache 1 

line A:  V 

line B:  I 

line C: V 

line A 

line B 

line A 

Cache 2 
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Local Coherence States 
• Individual caches can maintain a summary of the state of memory 

lines, from a “local” perspective 

– Reduces storage for maintaining state 

– May have only partial information  

• Invalid (I):  <0,X,X,X....X>  -- local cache does not have a valid copy; (cache 
miss) 

– Don’t confuse invalid state with empty frame 

• Shared (S):  <1,X,X,X,…,1> -- local cache has a valid copy, main memory has a 
valid copy, other caches ??  

• Modified(M): <1,0,0,..0,…0> -- local cache has only valid copy. 

• Exclusive(E): <1,0,0,..0,…1> -- local cache has a valid copy, no other caches 
do, main memory has a valid copy. 

• Owned(O): <1,X,X,X,….X> -- local cache has a valid copy, all other caches and 
memory may have a valid copy.   

– Only one cache can be in O state 

– <1,X,1,X,… 0> is included in O, but not included in any of the others. 
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Example 
Memory 

Cache 0 Cache 1 

line A:  V 
line B:  I 
line C: V 

line A 
line B 

line A 

Cache 2 

  

Memory

Cache 0 Cache 1

line A:  V

line B:  I

line C: V

line A:  S

line B:  M

line C:   I

line A: S

line B:  I

line C:  I

Cache 2

line A:  I

line B:  I

line C:  I
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Snoopy Cache Coherence 
• All requests broadcast on bus 
• All processors and memory snoop and respond 
• Cache blocks writeable at one processor or read-

only at several 
– Single-writer protocol 

• Snoops that hit dirty lines? 
– Flush modified data out of cache 

– Either write back to memory, then satisfy remote miss 
from memory, or 

– Provide dirty data directly to requestor 

– Big problem in MP systems 
• Dirty/coherence/sharing misses 
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Bus-Based Protocols 

• Protocol consists of 
states and actions 
(state transitions) 

• Actions can be 
invoked from 
processor or bus 

 

Cache

Controller
Cache Data

Processor

Bus

Processor Actions

Bus Actions

State Tags
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Minimal Coherence Protocol 

• Blocks are always 
private or exclusive 

• State transitions: 
– Local read: I->M, fetch, 

invalidate other copies 

– Local write: I->M, 
fetch, invalidate other 
copies 

– Evict: M->I, write back 
data 

– Remote read: M->I, 
write back data 

– Remote write: M->I, 
write back data 

 

Valid 
(M) 

Invalid 
(I) 

Local 
Read or 
Local 
Write 

Evict or 
Remote 
Read or 
Remote 
Write 

Local Read or 
Local Write 

Tag State Data 

A M … 

B I … 

Cache 

98 Mikko Lipasti-University of Wisconsin 



Invalidate Protocol Optimization 

• Observation: data often read shared by  multiple CPUs 
– Add S (shared) state to protocol: MSI 

• State transitions: 
– Local read: I->S, fetch shared 

– Local write: I->M, fetch modified; S->M, invalidate other copies 

– Remote read: M->I, write back data 

– Remote write: M->I, write back data 
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Simple Coherence 
Protocol FSM 

[Source: Patterson/Hennessy, Comp. Org. & 
Design] 
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MSI Protocol 
Action and Next State 

  

Current 

State 

 Processor 

 Read 

 Processor 

 Write 

 Eviction Cache 

Read 

 Cache 

Read&M   

Cache 

Upgrade 

I Cache Read 

Acquire 

Copy 

→ S 

Cache Read&M 

Acquire Copy 

→ M 

  No Action 

→ I 

No Action 

→ I 

No Action 

→ I 

S No Action 

→ S 

Cache Upgrade 

→ M 

No Action 

→ I 

No Action 

→ S 

Invalidate 

Frame 

→ I 

Invalidate 

Frame 

→ I 

M No Action 

→ M 

No Action 

→ M 

Cache 

Write 

back 

→ I 

Memory 

inhibit; 

Supply 

data; 

→ S 

Invalidate 

Frame; 

Memory 

inhibit; 

Supply data; 

→ I 

  

(c) 2007 Jim Smith 



MSI Example 

 

• If line is in no cache 
– Read, modify, Write requires 2 bus transactions 
– Optimization: add Exclusive state 

Thread Event     Bus Action   Data From    Global State   Local States: 

C0   C1   C2 

0. Initially: <0,0,0,1>                           I I I 

1. T0 read→             CR Memory <1,0,0,1>                            S I I 

2. T0 write→            CU <1,0,0,0>                           M I I 

3. T2 read→             CR C0 <1,0,1,1>                            S I S 

4. T1 write→            CRM Memory <0,1,0,0>                            I M I 
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Invalidate Protocol Optimizations 

• Observation: data can be write-private (e.g. stack frame) 
– Avoid invalidate messages in that case 

– Add E (exclusive) state to protocol: MESI 

• State transitions: 
– Local read: I->E if only copy, I->S if other copies exist 

– Local write: E->M silently, S->M, invalidate other copies 
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MESI Protocol 
• Variation used in many Intel processors   
• 4-State Protocol  

– Modified: <1,0,0…0> 

– Exclusive: <1,0,0,…,1> 

– Shared: <1,X,X,…,1> 

– Invalid: <0,X,X,…X> 

• Bus/Processor Actions 

– Same as MSI 

• Adds shared signal to indicate if other caches have a copy 
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MESI Protocol 
Action and Next State 

  

Current 

State 

 Processor 

 Read 

 Processor 

 Write 

 Eviction Cache 

Read 

 Cache 

Read&M   

Cache 

Upgrade 

I Cache 

Read 

If no 

sharers: 

→ E 

If sharers: 

→ S  

Cache Read&M 

→ M 

  No Action 

→ I 

No Action 

→ I 

No Action 

→ I 

S No Action 

→ S 

Cache Upgrade 

→ M 

No Action 

→ I 

Respond 

Shared: 

→ S 

No Action 

→ I 

No Action 

→ I 

E No Action 

→ E 

No Action 

 → M 

No Action 

→ I 

Respond 

Shared; 

→ S 

No Action 

→ I 

M No Action 

→ M 

No Action 

→ M 

Cache 

Write-back  

→ I 

Respond 

dirty; 

Write back 

data; 

→ S 

Respond 

dirty; 

Write back 

data; 

→ I 
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MESI Example 

Thread Event     Bus 

Action   

Data From    Global State   Local States: 

C0   C1    C2 

0. Initially: <0,0,0,1>                           I I I 

1. T0 read→             CR Memory <1,0,0,1>                            E I I 

2. T0 write→            none <1,0,0,0>                           M I I 
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Cache-to-cache Transfers 

• Common in many workloads: 
– T0 writes to a block: <1,0,…,0> (block in M state in T0) 
– T1 reads from block: T0 must write back, then T1 reads from memory 

 
• In shared-bus system 

– T1 can snarf data from the bus during the writeback 
– Called cache-to-cache transfer or dirty miss or intervention 

 

• Without shared bus 
– Must explicitly send data to requestor and to memory (for writeback) 

 
• Known as the 4th C (cold, capacity, conflict, communication) 
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MESI Example 2 

Thread Event     Bus 

Action   

Data From    Global State   Local States: 

C0   C1    C2 

0. Initially: <0,0,0,1>                           I I I 

1. T0 read→             CR Memory <1,0,0,1>                            E I I 

2. T0 write→            none <1,0,0,0>                           M I I 

3. T1 read→            CR C0 <1,1,0,1>                           S S I 

4. T2 read→            CR Memory <1,1,1,1>                           S S S 
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MOESI Optimization 

• Observation: shared ownership prevents cache-to-cache 
transfer, causes unnecessary memory read 
– Add O (owner) state to protocol: MOSI/MOESI 
– Last requestor (or last writer) becomes the owner 
– Avoid writeback (to memory) of dirty data 
– Also called shared-dirty state, since memory is stale 
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MOESI  Protocol 
• Used in AMD Opteron 
• 5-State Protocol  

– Modified: <1,0,0…0> 
– Exclusive: <1,0,0,…,1> 
– Shared: <1,X,X,…,1> 
– Invalid: <0,X,X,…X> 
– Owned: <1,X,X,X,0> ; only one owner, memory not up to date 

• Owner can supply data, so memory does not have to 
– Avoids lengthy memory access 
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MOESI  Protocol 
Action and Next State 

  

Current 

State 

 Processor 

 Read 

 Processor 

 Write 

 Eviction   Cache Read  Cache Read&M   Cache 

Upgrade 

I Cache Read 

 If no sharers: 

→ E 

If sharers: 

→ S  

Cache Read&M 

→ M 

   No Action 

→ I 

No Action 

→ I 

No 

Action 

→ I 

S No Action 

→ S 

Cache Upgrade 

→ M 

No Action 

→ I 

Respond 

shared; 

→ S 

No Action 

→ I 

No 

Action 

→ I 

E No Action 

→ E 

No Action      

→ M 

No Action 

→ I 

Respond 

shared; 

Supply data; 

→ S 

Respond 

shared; 

Supply data; 

→ I 

  

O No Action 

→ O 

Cache 

Upgrade 

→ M 

Cache 

Write-back 

→ I 

Respond   

shared; 

Supply data; 

→ O 

Respond 

shared; 

Supply data; 

→ I 

  

M No Action 

→ M 

No Action 

→ M 

Cache 

Write-back 

→ I 

Respond   

shared; 

Supply data; 

→ O 

Respond 

shared; 

Supply data; 

→ I 
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MOESI Example 

 

 

Thread Event     Bus Action   Data From    Global State   local states 

C0   C1  C2 

0. Initially: <0,0,0,1>                           I I I 

1. T0 read→             CR Memory <1,0,0,1>                            E I I 

2. T0 write→            none <1,0,0,0>                           M I I 

3. T2 read→             CR C0 <1,0,1,0>                            O I S 

4. T1 write→            CRM C0 <0,1,0,0>                            I M I 
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Further Optimizations 

• Observation: Shared blocks should only be fetched from 
memory once 
– If I find a shared block on chip, forward the block 
– Problem: multiple shared blocks possible, who forwards? 

• Everyone? Power/bandwidth wasted 

– Single forwarder, but who? 
• Last one to receive block: F state 
• I->F for requestor, F->S for forwarder 

– What if F block is evicted? 
• Favor F blocks in replacement? 
• Don’t allow silent eviction (force some other node to be F) 
• Fall back on memory copy if can’t find F copy 

• IBM protocols do something very similar 
• Intel has also adopted F state in recent designs (QPI) 
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Further Optimizations 

• Observation: migratory data often “flies by” 
– Add T (transition) state to protocol 
– Tag is still valid, data isn’t 
– Data can be snarfed as it flies by 
– Only works with certain kinds of interconnect networks 
– Replacement policy issues 

• Many other optimizations are possible 
– Literature extends 25 years back 
– Many unpublished (but implemented) techniques as well 
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Update Protocols 
• Basic idea:  

– All writes (updates) are made visible to all caches:  
• (address,value) tuples sent “everywhere” 
• Similar to write-through protocol for uniprocessor caches 

– Obviously not scalable beyond a few processors 
– No one actually builds machines this way 

• Simple optimization 
– Send updates to memory/directory 
– Directory propagates updates to all known copies: less bandwidth 

• Further optimizations: combine & delay 
– Write-combining of adjacent updates (if consistency model allows) 
– Send write-combined data 
– Delay sending write-combined data until requested 

• Logical end result 
– Writes are combined into larger units, updates are delayed until needed 
– Effectively the same as invalidate protocol 

• Of historical interest only (Firefly and Dragon protocols) 
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Update vs Invalidate 
• [Weber & Gupta, ASPLOS3] 

– Consider sharing patterns 

• No Sharing 

– Independent threads 

– Coherence due to thread migration 

– Update protocol performs many wasteful updates 

• Read-Only 

– No significant coherence issues; most protocols work well 

• Migratory Objects 

– Manipulated by one processor at a time 

– Often protected by a lock 

– Usually a write causes only a single invalidation 

– E state useful for Read-modify-Write patterns 

– Update protocol could proliferate copies 
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Update vs Invalidate, contd. 
• Synchronization Objects 

– Locks 
– Update could reduce spin traffic invalidations 
– Test&Test&Set w/ invalidate protocol would work well 

• Many Readers, One Writer 
– Update protocol may work well, but writes are relatively rare 

• Many Writers/Readers 
– Invalidate probably works better 
– Update will proliferate copies 

• What is used today? 
– Invalidate is dominant 
– CMP has not changed this assessment 

• Even with plentiful on-chip bandwidth 
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Nasty Realities 

• State diagram is for (ideal) protocol assuming 
instantaneous and actions 

• In reality controller implements more complex diagrams 

– A protocol state transition may be started by controller when 
bus activity changes local state 

– Example: an upgrade pending (for bus) when an invalidate for 
same line arrives 
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Example: MSI (SGI-Origin-like, directory, invalidate) 
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Stable States 
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Example: MSI (SGI-Origin-like, directory, invalidate) 
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Stable States 

 

Busy States 
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Cache coherence complexity 

121 [Lepak Thesis, ‘03] 

L2 MOETSI Transitions 
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Implementing Cache Coherence 
• Snooping implementation 

– Origins in shared-memory-bus systems 

– All CPUs could observe all other CPUs requests on the bus; 
hence “snooping” 
• Bus Read, Bus Write, Bus Upgrade 

– React appropriately to snooped commands 
• Invalidate shared copies 

• Provide up-to-date copies of dirty lines 
– Flush (writeback) to memory, or 

– Direct intervention (modified intervention or dirty miss) 

• Snooping suffers from: 
– Scalability: shared busses not practical 

– Ordering of requests without a shared bus 

– Lots of recent and on-going work on scaling snoop-based 
systems 
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Snooping Cache Coherence 
• Basic idea: broadcast snoop to all caches to find owner 
• Not scalable? 

– Address traffic roughly proportional to square of number of 
processors 

– Current implementations scale to 64/128-way (Sun/IBM) with 
multiple address-interleaved broadcast networks 

• Inbound snoop bandwidth: big problem 
 

OutboundSnoopRate so CacheMissRate  BusUpgradeRate += =

InboundSnoopRate si n so= =
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Snoop Bandwidth 
 Snoop filtering of various kinds is possible 
 Filter snoops at sink: Jetty filter [Moshovos et al., HPCA 2001] 

– Check small “filter cache” that summarizes contents of local 
cache 

– Avoid power-hungry lookups in each tag array 

 Filter snoops at source: Multicast snooping [Bilir et al., ISCA 1999] 

– Predict likely sharing set, snoop only predicted sharers 
– Double-check at directory to make sure 

 Filter snoops at source: Region coherence  
– Concurrent work: [Cantin/Smith/Lipasti, ISCA 2005; Moshovos, ISCA 2005] 

– Check larger region of memory on every snoop; remember 
when no sharers 

– Snoop only on first reference to region, or when region is shared 
– Eliminate 60%+ of all snoops 
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Snoop Latency 

 Snoop latency:  
– Must reach all nodes, return and combine responses 
– Topology matters: ring, mesh, torus, hypercube 
– No obvious solutions 

 Parallelism: fundamental advantage of snooping 
– Broadcast exposes parallelism, enables speculative latency 

reduction 

LDir RDirXSnp XRsp CRsp RDatXRd XDat UDat

RDat XDat UDat

RDat XDat UDat

RDat XDat UDat
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Scaleable Cache Coherence 
• No physical bus but still snoop 

– Point-to-point tree structure (indirect) or ring 

– Root of tree or ring provide ordering point 

– Use some scalable network for data (ordering less 
important) 

• Or, use level of indirection through directory 
– Directory at memory remembers: 

• Which processor is “single writer” 

• Which processors are “shared readers” 

– Level of indirection has a price 
• Dirty misses require 3 hops instead of two 

– Snoop: Requestor->Owner->Requestor 

– Directory: Requestor->Directory->Owner->Requestor 
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Implementing Cache Coherence 
• Directory implementation 

– Extra bits stored in memory (directory) record state of line 
– Memory controller maintains coherence based on the current state 
– Other CPUs’ commands are not snooped, instead: 

• Directory forwards relevant commands 

– Powerful filtering effect: only observe commands that you need to 
observe 

– Meanwhile, bandwidth at directory scales by adding memory 
controllers as you increase size of the system 
• Leads to very scalable designs (100s to 1000s of CPUs) 

• Directory shortcomings 
– Indirection through directory has latency penalty 
– If shared line is dirty in other CPU’s cache, directory must forward 

request, adding latency 
– This can severely impact performance of applications with heavy 

sharing (e.g. relational databases) 
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Directory Protocol Implementation 
• Basic idea: Centralized directory keeps track of data 

location(s) 
• Scalable 

– Address traffic roughly proportional to number of processors 
– Directory & traffic can be distributed with memory banks 

(interleaved) 
– Directory cost (SRAM) or latency (DRAM) can be prohibitive 

• Presence bits track sharers 
– Full map (N processors, N bits): cost/scalability 
– Limited map (limits number of sharers) 
– Coarse map (identifies board/node/cluster; must use broadcast) 

• Vectors track sharers 
– Point to shared copies 
– Fixed number, linked lists (SCI), caches chained together 
– Latency vs. cost vs. scalability 
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Directory Protocol Latency 

• Access to non-shared data 
– Overlap directory read with data read 
– Best possible latency given distributed memory 

• Access to shared data 
– Dirty miss, modified intervention 
– Shared intervention? 

• If DRAM directory, no gain 
• If directory cache, possible gain (use F state) 

– No inherent parallelism 
– Indirection adds latency 
– Minimum 3 hops, often 4 hops 

LDir RDirXSnp XRd RDat UDatXDat
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Directory-based Cache Coherence 

• An alternative for large, scalable 
MPs 

• Can be based on any of the 
protocols discussed thus far 
–We will use MSI 

• Memory Controller becomes an 
active participant 

• Sharing info held in memory 
directory 
–Directory may be distributed 

• Use point-to-point messages 

• Network is not totally ordered 

Cache

Processor

Interconnection Network

Memory

Module

Directory

Cache

Processor

Memory

Module

Directory

Cache

Processor

Memory

Module

Directory

. . .

. . .
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Example: Simple Directory Protocol 
• Local cache controller states 

– M, S, I   as before 

• Local directory states 
– Shared: <1,X,X,…1>; one or more proc. has copy; memory 

is up-to-date 

– Modified: <0,1,0,….,0>  one processor has copy; memory 
does not have a valid copy 

– Uncached:  <0,0,…0,1>  none of the processors has a valid 
copy 

• Directory also keeps track of sharers 
– Can keep global state vector in full 

– e.g. via a bit vector 
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Example 

• Local cache suffers load miss 

• Line in remote cache in  M state 
– It is the owner 

• Four messages send over network 
–Cache read from local controller to 

home memory controller 

–Memory read to remote cache 
controller 

–Owner data back to memory 
controller; change state to S 

–Memory data back to local cache; 
change state to S 

 . . .

. . .
Cache

Processor

Owner

Controller
Cache

Processor

Local

Controller
Cache

Processor

Remote

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

processor

read

cache

read

memory

read

owner

data

response

memory

data

response Interconnect
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Cache Controller State Table 
Cache Controller 

Actions and Next States 
  

from Processor Side from Memory Side 
  

Current 

State 

Processor 

 Read 

 Processor 

 Write 

 Eviction Memory 

Read 

Memory 

Read&M 

 Memory 

 Invalidate   

Memory 

Upgrade 

Memory Data 

I Cache 

Read 

→ I' 

Cache 

Read&M 

→ I'' 

     No Action 

→ I 

  

S No 

Action 

→ S 

Cache 

Upgrade 

→ S' 

No 

Action* 

→ I 

  Invalidate 

Frame; 

Cache ACK; 

→ I 

  

M No 

Action 

→ M 

No Action 

→ M 

Cache 

Write-

back 

→ I 

Owner 

Data; 

→ S 

Owner 

Data; 

→ I 

Invalidate 

Frame; 

Cache ACK; 

→ I 

  

I' Fill Cache 

→ S 

I'' Fill Cache 

→ M 

S' No 

Action 

→ M 
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Memory Controller State Diagram 
Memory Controller  

Actions and Next States 
  

command from Local Cache Controller response from Remote Cache Controller 

Current 

Directory 

State 

 Cache 

 Read 

Cache Read&M Cache  

Upgrade  

 Data  

Write-back 

Cache ACK Owner 

Data   

U Memory Data; 

Add Requestor to 

Sharers; 

→ S 

Memory Data; 

Add Requestor to 

Sharers; 

→ M 

         

  

S Memory Data; 

Add Requestor to 

Sharers; 

→ S 

Memory  

Invalidate All 

Sharers; 

→ M' 

Memory  

Upgrade 

All Sharers; 

→ M'' 

  No Action 

→ I 
  

M Memory Read 

 from Owner; 

→ S' 

Memory Read&M; 

to Owner 

→ M' 

Make Sharers 

Empty; 

→ U 

  

S' Memory Data 

 to Requestor; 

Write memory; 

Add Requestor to 

Sharers; 

→ S 

  

M' When all 

ACKS 

Memory Data; 

→ M 

Memory Data 

 to Requestor; 

→ M 
  

M'' When all 

ACKS  then 

→ M 
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Another Example 

• Local write (miss)  to shared line 

• Requires invalidations and acks 

Memory

Banks

Directory

Home Memory

Controller

. . .

. . .
Cache

Processor

Remote

Controller
Cache

Processor

Local

Controller
Cache

Processor

Remote

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

processor

write

cache

Read&M

memory

invalidate

cache

ack
memory

data

response Interconnect

cache

ack
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Example  Sequence 

• Similar to earlier sequences 

 
Thread Event     Controller 

 Actions   

Data From    global state   local states: 

C0   C1    C2 

0. Initially: <0,0,0,1>                           I I I 

1. T0 read→             CR,MD Memory <1,0,0,1>                            S I I 

2. T0 write→            CU, MU*,MD <1,0,0,0>                           M I I 

3. T2 read→             CR,MR,MD C0 <1,0,1,1>                            S I S 

4. T1 write→            CRM,MI,CA,MD Memory <0,1,0,0>                            I M I 
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Variation: Three Hop Protocol 

• Have owner send data directly to local controller 

• Owner Acks to Memory Controller in parallel 

Local

Controller

Owner

Controller

Memory

Controller

cache

read

memory

read

owner

data

memory

data

1 2

3

4

Local

Controller

Owner

Controller

Memory

Controller

cache

read

memory

read

owner

data

owner

ack1 2
3

3

a) b)
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Directory Protocol Optimizations 

• Remove dead blocks from cache: 
– Eliminate 3- or 4-hop latency 
– Dynamic Self-Invalidation [Lebeck/Wood, ISCA 1995] 

– Last touch prediction [Lai/Falsafi, ISCA 2000] 

– Dead block prediction [Lai/Fide/Falsafi, ISCA 2001] 

• Predict sharers 
– Prediction in coherence protocols [Mukherjee/Hill, ISCA 1998] 

– Instruction-based prediction [Kaxiras/Goodman, ISCA 1999] 

– Sharing prediction [Lai/Falsafi, ISCA 1999]  

• Hybrid snooping/directory protocols 
– Improve latency by snooping, conserve bandwidth with directory 
– Multicast snooping [Bilir et al., ISCA 1999; Martin et al., ISCA 2003] 

– Bandwidth-adaptive hybrid [Martin et al., HPCA 2002] 

– Token Coherence [Martin et al., ISCA 2003] 

– Virtual Tree Coherence [Enright Jerger MICRO 2008] 
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Protocol Races 
• Atomic bus 

– Only stable states in protocol (e.g. M, S, I) 

– All state transitions are atomic (I->M) 

– No conflicting requests can interfere since bus is held till transaction 
completes 

• Distinguish coherence transaction from data transfer 

• Data transfer can still occur much later; easier to handle this case 

• Atomic buses don’t scale 
– At minimum, separate bus request/response 

• Large systems have broadly variable delays 
– Req/resp separated by dozens of cycles 

– Conflicting requests can and do get issued 

– Messages may get reordered in the interconnect 

• How do we resolve them? 
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Example: MSI (SGI-Origin-like, directory, invalidate) 
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Stable States 
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“unexpected” events from 

concurrent requests to 
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Resolving Protocol Races 
• Req/resp decoupling introduces transient 

states 

– E.g. I->S is now I->ItoX->ItoS_nodata->S 

• Conflicting requests to blocks in transient 
states 

– NAK – ugly; livelock, starvation potential 

– Keep adding more transient states … 

• Directory protocol makes this a bit easier 

– Can order at directory, which has full state info 

– Even so, messages may get reordered 
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Common Protocol Races 
• Read strings: P0 read, P1 read, P2 read 

– Easy, since read is nondestructive 

– Can rely on F state to reduce DRAM accesses 

– Forward reads to previous requestor (F) 

• Write strings: P0 write, P1 write, P2 write 
– Forward P1 write req to P0 (M) 

– P0 completes write then forwards M block to P1 

– Build string of writes (write string forwarding) 

• Read after write (similar to prev. WAW) 

• Writeback race: P0 evicts dirty block, P1 reads 
– Dirty block is in the network (no copy at P0 or at dir) 

– NAK P1, or force P0 to keep copy till dir ACKs WB 

• Many others crop up, esp. with optimizations 
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Lecture 5 Outline 

• Main Memory and Cache Review 

• Caches and Replacement Policies 

• Cache Coherence 

– Coherence States 

– Snoopy bus-based Invalidate Protocols 

– Invalidate protocol optimizations 

– Update Protocols (Dragon/Firefly) 

– Directory protocols 

– Implementation issues 
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Additional Slides 

• For reference only 
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Update Protocol: Dragon 
• Dragon (developed at Xerox PARC) 

• 5-State Protocol  

– Invalid:<0,X,X,…X> 

• Some say no invalid state – due to confusion regarding empty frame 
versus invalid line state 

– Exclusive: <1,0,0,…,1> 

– Shared-Clean (Sc): <1,X,X,…X>  memory may not be up-to-date 

– Shared-Modified (Sm): <1,X,X,X…0> memory not up-to-date; only one 
copy in Sm 

– Modified: <1,0,0,…0> 

• Includes Cache Update action 

• Includes Cache Writeback action 

• Bus includes Shared flag 

– Appears to also require memory inhibit signal 

– Distinguish shared case where cache (not memory) supplies data  
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Dragon State Diagram 
Action and Next State 

Current 

State 

 Processor 

 Read 

 Processor 

 Write 

 Eviction   Cache Read Cache Update 

I Cache Read 

 If no sharers: 

→ E 

If sharers: 

→ Sc  

Cache Read 

If no sharers: 

→ M 

If sharers: 

Cache Update 

→ Sm 

  → I → I 

Sc No Action 

→ Sc 

Cache Update 

If no sharers: 

→M 

If sharers: 

→ Sm 

No Action 

→ I 

Respond Shared; 

→ Sc 

Respond shared; 

Update copy; 

→ Sc 

E No Action 

→ E 

No Action 

      

→ M 

No Action 

→ I 

Respond shared; 

Supply data 

→ Sc 

Sm No Action 

→ Sm 

Cache Update 

If no sharers: 

→M 

If sharers: 

→ Sm 

Cache Write-back 

→ I 

Respond   shared; 

Supply data; 

→ Sm 

Respond shared; 

Update copy; 

→ Sc 

M No Action 

→ M 

No Action 

→ M 

Cache Write-back 

→ I 

Respond   shared; 

Supply data; 

→ Sm 
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Example 
Thread Event     Bus Action   Data From    Global State   local states 

C0      C1    C2 

0. Initially: <0,0,0,1>                           I I I 

1. T0 read→             CR Memory <1,0,0,1>                            E I I 

2. T0 write→            none <1,0,0,0>                           M I I 

3. T2 read→             CR C0 <1,0,1,0>                            Sm I Sc 

4. T1 write→            CR,CU C0 <1,1,1,0>                            Sc Sm Sc 

5. T0 read→ none (hit) C0 <1,1,1,0>                            Sc Sm Sc 

• Appears to require atomic bus cycles CR,CU on write to invalid 
line 
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Update Protocol: Firefly 
• Develped at DEC by ex-Xerox people 

• 5-State Protocol 

– Similar to Dragon – different state naming based on shared/exclusive and 
clean/dirty 

– Invalid:<0,X,X,…X> 

– EC: <1,0,0,…,1> 

– SC: <1,X,X,…X>  memory may not be up-to-date 

– EM: <1,0,0,…0> 

– SM: <1,X,X,X…0> memory not up-to-date; only one copy in Sm 

• Performs write-through updates (different from Dragon) 
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