
ECE/CS 757: Advanced
Computer Architecture II

Instructor:Mikko H Lipasti

Spring 2017

University of Wisconsin-Madison

Lecture notes based on slides created by John Shen,
Mark Hill, David Wood, Guri Sohi, Jim Smith, Natalie

Enright Jerger, Michel Dubois, Murali Annavaram,
Per Stenström and probably others

Lecture 5 Outline

• Main Memory and Cache Review

• Caches and Replacement Policies

• Cache Coherence

– Coherence States

– Snoopy bus-based Invalidate Protocols

– Invalidate protocol optimizations

– Update Protocols (Dragon/Firefly)

– Directory protocols

– Implementation issues

 2 Mikko Lipasti-University of Wisconsin

Main Memory

• DRAM chips

• Memory organization

– Interleaving

–Banking

• Memory controller design

3 Mikko Lipasti-University of Wisconsin

DRAM Chip Organization

• Optimized for density, not speed

• Data stored as charge in capacitor

• Discharge on reads => destructive reads

• Charge leaks over time

– refresh every 64ms

Sense Amps

Row Buffer

Column Decoder

R
ow

 D
ec

o
de

r

Word
Lines

Bitl ines

Memory
Cell

Row
Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

 Cycle time roughly twice
access time

 Need to precharge bitlines
before access

4

DRAM Chip Organization

• Current generation DRAM

– 8Gbit @25nm

– 266 MHz synchronous interface

– Data clock 4x (1066MHz), double-data
rate so 2133 MT/s

Sense Amps

Row Buffer

Column Decoder

R
ow

 D
ec

o
de

r

Word
Lines

Bitl ines

Memory
Cell

Row
Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

 Address pins are time-multiplexed

– Row address strobe (RAS)

– Column address strobe (CAS)

5

DRAM Chip Organization

• New RAS results in:

– Bitline precharge

– Row decode, sense

– Row buffer write (up to 8K)

 New CAS

– Read from row buffer

– Much faster (3x)

 Streaming row accesses desirable

6

Sense Amps

Row Buffer

Column Decoder

R
ow

 D
ec

o
de

r

Word
Lines

Bitl ines

Memory
Cell

Row
Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

Simple Main Memory

• Consider these parameters:

– 10 cycles to send address

– 60 cycles to access each word

– 10 cycle to send word back

• Miss penalty for a 4-word block

– (10 + 60 + 10) x 4 = 320

• How can we speed this up?

7 Mikko Lipasti-University of Wisconsin

Wider(Parallel) Main Memory

• Make memory wider

– Read out all words in parallel

• Memory parameters

– 10 cycle to send address

– 60 to access a double word

– 10 cycle to send it back

• Miss penalty for 4-word block: 2x(10+60+10) = 160

• Costs

– Wider bus

– Larger minimum expansion unit (e.g. paired DIMMs)

8 Mikko Lipasti-University of Wisconsin

Interleaved Main Memory

• Each bank has

– Private address lines

– Private data lines

– Private control lines (read/write)

Byte in Word

Word in Doubleword

Bank

Doubleword in bank

Bank 0

Bank2

Bank 1

Bank 3

 Break memory into M banks

– Word A is in A mod M at A div M

 Banks can operate concurrently and
independently

9 Mikko Lipasti-University of Wisconsin

Interleaved and Parallel Organization

DRAM

A
d
d r

C
m

d

D
a
t a

C
S

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

A
d
dr

C
m

d

D
a
ta

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

A
d
d
r

C
m
d

D
at

a

C
S

A
d
d
r

C
m

d

D
a ta

C
S

A
d
d
r

C
m
d

D
at

a

A
d
d
r

C
m
d

D
a ta

Serial Parallel

Non-interleaved

Interleaved

10 Mikko Lipasti-University of Wisconsin

Mikko Lipasti-University of Wisconsin 11

Interleaved Memory Examples
Ai = address to bank i

Ti = data transfer
– Unit Stride: A0 T0bank 0 access

A1 T1bank 1 access

A2 T2bank 2 access

A3 T3bank 3 access

• Stride 3: A0 T0bank 0 access

A3 T1bank 3 access

A2 T2bank 2 access

A1 T3bank 1 access

02/07
ECE/CS 757; copyright J. E. Smith,

2007
12

DDR SDRAM Control

Idle Active

Bank Precharge

Row Activation

Column

Access

 Raise level of abstraction: commands
• Activate row

Read row into row buffer

• Column access

Read data from addressed row

• Bank Precharge

Get ready for new row access

Bank N-1

Bank 1

Memory Array

Bank 0

R
o
w

 D
e

c
o

d
e

r

Sense Amplifiers

Row Buffer

Column Decoder

Address

Data

Memory Array

Bank 0

02/07 ECE/CS 757; copyright J. E. Smith, 2007 13

DDR SDRAM Timing

Data

Command

Clock

CMD

 Read access

02/07
ECE/CS 757; copyright J. E. Smith,

2007
14

Constructing a Memory System

• Combine chips in parallel to increase access width
– E.g. 4 16-bit wide DRAMs for a 64-bit parallel access

– DIMM – Dual Inline Memory Module

• Combine DIMMs to form multiple ranks

• Attach a number to DIMMs to a memory channel
– Memory Controller manages a channel (or two lock-step channels)

• Interleave patterns:
– Rank, Row, Bank, Column, [byte]

– Row, Rank, Bank, Column, [byte]

•Better dispersion of addresses

•Works better with power-of-two ranks

02/07
ECE/CS 757; copyright J. E. Smith,

2007
15

Memory Controller and Channel
DIMM 0

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

DIMM 1 DIMM 2

DDR

SDRAM

Controller

1 Channel

chip (DIMM) select
data
address and command

02/07
ECE/CS 757; copyright J. E. Smith,

2007
16

MP Memory Systems

• Memory controller can be centralized

– Mostly in smaller systems

• More often distributed in larger (Multi-CMP) MP systems

channel

channel channel

controller controller

channel

controller controller

Memory 0

CMP0

Memory 2

Memory 1

Memory 3

CMP1

CMP2 CMP3

02/07
ECE/CS 757; copyright J. E. Smith,

2007
17

Memory Controllers

• Contains buffering

– In both directions

• Scheduler’s manage
resources

– Channel and banks

Arrival Time Assignment

Cache Commands

and Addresses

Bank 0

Requests

Bank n-1

Requests
. . .

Bank 0

Scheduler
Bank 0

Scheduler

Channel

Scheduler

Cache Line

Write Buffer

Cache Line

Read Buffer

Control Path Command/Response

Path

SDRAM Data Bus

Cache Data Bus Cache Data Bus

SDRAM Data BusSDRAM Command/

Address Bus

Data Path

Transaction Buffer

02/07 ECE/CS 757; copyright J. E. Smith, 2007 18

Resource Scheduling
• An interesting optimization problem

• Example:

– Precharge: 3 cycles

– Row activate: 3 cycles

– Column access: 1 cycle

– FR-FCFS: 20 cycles

– StrictFIFO: 56 cycles

(0,0,0)

(0,1,0)

(0,0,1)

(0,1,3)

(1,0,0)

(1,1,1)

(1,0,0)

(1,1,2)R
e

q
u
e

s
t

S
e

q
u
e

n
c
e

(B
a

n
k
,
R

o
w

,
C

o
lu

m
n

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P A

P A

P

C

C

A C

C

C

P A C

C

C

P: bank Precharge

A: row Activation

C: Column Access

Idle Active

Bank Precharge

Row Activation

Column

Access

02/07 ECE/CS 757; copyright J. E. Smith, 2007 19

DDR SDRAM Policies

• Goal: try to maximize requests to an open row (page)

• Close row policy

– Always close row, hides precharge penalty

– Lost opportunity if next access to same row

• Open row policy

– Leave row open

– If an access to a different row, then penalty for precharge

• Also performance issues related to rank interleaving

– Better dispersion of addresses

02/07
ECE/CS 757; copyright J. E. Smith,

2007
20

Study by Natarajan et al.
[C. Natarajan, B. Christenson, and F. Briggs, “A Study of Performance Impact of Memory

Controller Features in Multi-Processor Server Environment,” Proc. of the 3rd Workshop on
Memory Perf. Issues, June 2004]

• Intel Servers

– IA-32 : In-order front-side bus to processor

– IPF: Out-of-order front-side bus to processor

• Use server Benchmarks

• Open row (page) policy used in desktop systems

– Performs poorly in Server systems

• “Open-Policy2-0” works much better

– Leave open only until there is an idle cycle for the bank;
then close

02/07
ECE/CS 757; copyright J. E. Smith,

2007
21

Results #3

22

Memory Scheduling Contest

• http://www.cs.utah.edu/~rajeev/jwac12/

• Clean, simple, infrastructure

• Traces provided

• Very easy to make fair comparisons

• Comes with 6 schedulers

• Also targets power-down modes (not just page
open/close scheduling)

• Three tracks:

1. Delay (or Performance),

2. Energy-Delay Product (EDP)

3. Performance-Fairness Product (PFP)

http://www.cs.utah.edu/~rajeev/jwac12/
http://www.cs.utah.edu/~rajeev/jwac12/

Future: Hybrid Memory Cube

• Micron proposal [Pawlowski, Hot Chips 11]

– www.hybridmemorycube.org 23

Hybrid Memory Cube MCM

• Micron proposal [Pawlowski, Hot Chips 11]

– www.hybridmemorycube.org
24

Network of DRAM

• Traditional DRAM: star topology

• HMC: mesh, etc. are feasible

25

Hybrid Memory Cube

• High-speed logic segregated in chip stack

• 3D TSV for bandwidth 26

High Bandwidth Memory (HBM)

• High-speed serial links vs. 2.5D silicon interposer

• Commercialized, HBM2/HBM3 on the way
27

[Shmuel Csaba Otto Traian]

Future: Resistive memory
• PCM: store bit in phase state of material

• Alternatives:
– Memristor (HP Labs)

– STT-MRAM

• Nonvolatile

• Dense: crosspoint architecture (no access device)

• Relatively fast for read

• Very slow for write (also high power)

• Write endurance often limited
– Write leveling (also done for flash)

– Avoid redundant writes (read, cmp, write)

– Fix individual bit errors (write, read, cmp, fix)

28

Memory Hierarchy

Registers

On-Chip
SRAM

Off-Chip
SRAM

DRAM

Disk

C
A
P
A
C
IT

Y

S
P
E
E
D

 a
n
d
 C

O
S
T

29 Mikko Lipasti-University of Wisconsin

• Need lots of bandwidth

• Need lots of storage
– 64MB (minimum) to multiple TB

• Must be cheap per bit
– (TB x anything) is a lot of money!

• These requirements seem incompatible

Why Memory Hierarchy?

sec

6.5

sec

144.0410.1

GB

Gcycles

Dref

B

inst

Dref

Ifetch

B

inst

Ifetch

cycle

inst
BW

30 Mikko Lipasti-University of Wisconsin

Why Memory Hierarchy?

• Fast and small memories
– Enable quick access (fast cycle time)

– Enable lots of bandwidth (1+ L/S/I-fetch/cycle)

• Slower larger memories
– Capture larger share of memory

– Still relatively fast

• Slow huge memories
– Hold rarely-needed state

– Needed for correctness

• All together: provide appearance of large, fast
memory with cost of cheap, slow memory

31 Mikko Lipasti-University of Wisconsin

Why Does a Hierarchy Work?

• Locality of reference
– Temporal locality

• Reference same memory location repeatedly

– Spatial locality
• Reference near neighbors around the same time

• Empirically observed
– Significant!

– Even small local storage (8KB) often satisfies >90%
of references to multi-MB data set

32 Mikko Lipasti-University of Wisconsin

Memory Hierarchy

CPU

I & D L1 Cache

Shared L2 Cache

Main Memory

Disk

Temporal Locality
•Keep recently referenced
items at higher levels
•Future references satisfied
quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels
•Future references satisfied
quickly

33 Mikko Lipasti-University of Wisconsin

Four Burning Questions

• These are:
– Placement

• Where can a block of memory go?

– Identification
• How do I find a block of memory?

– Replacement
• How do I make space for new blocks?

– Write Policy
• How do I propagate changes?

• Consider these for caches
– Built from SRAM, EDRAM, stacked DRAM

34 Mikko Lipasti-University of Wisconsin

Placement

Memory
Type

Placement Comments

Registers Anywhere;
Int, FP, SPR

Compiler/programmer
manages

Cache

(SRAM)

Fixed in H/W Direct-mapped,

set-associative,

fully-associative

DRAM Anywhere O/S manages

Disk Anywhere O/S manages

HUH?

35 Mikko Lipasti-University of Wisconsin

Placement

• Address Range

– Exceeds cache capacity

• Map address to finite capacity

– Called a hash

– Usually just masks high-order bits

• Direct-mapped

– Block can only exist in one location

– Hash collisions cause problems

SRAM Cache

Hash

Address

Index

Data Out

Index Offset

32-bit Address

Offset

Block Size

36 Mikko Lipasti-University of Wisconsin

Placement

• Fully-associative
– Block can exist anywhere

– No more hash collisions

• Identification
– How do I know I have the right

block?

– Called a tag check
• Must store address tags

• Compare against address

• Expensive!
– Tag & comparator per block

SRAM Cache

Hash

Address

Data Out

Offset

32-bit Address

Offset

Tag

Hit
Tag Check

?=

Tag

37 Mikko Lipasti-University of Wisconsin

Placement

• Set-associative

– Block can be in a
locations

– Hash collisions:
• a still OK

• Identification

– Still perform tag check

– However, only a in
parallel

SRAM Cache

Hash

Address

Data Out

Offset

Index

Offset

32-bit Address

Tag Index

a Tags a Data Blocks
Index

?=
?=

?=
?=

Tag

38 Mikko Lipasti-University of Wisconsin

Placement and Identification

• Consider: <BS=block size, S=sets, B=blocks>
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B)

– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4)

– <64,1,64>: o=6, i=0, t=26: fully associative (S=1)

• Total size = BS x B = BS x S x (B/S)

Offset

32-bit Address

Tag Index

Portion Length Purpose

Offset o=log2(block size) Select word within block

Index i=log2(number of sets) Select set of blocks

Tag t=32 - o - i ID block within set

39 Mikko Lipasti-University of Wisconsin

Replacement

• Cache has finite size

– What do we do when it is full?

• Analogy: desktop full?

– Move books to bookshelf to make room

• Same idea:

– Move blocks to next level of cache

40 Mikko Lipasti-University of Wisconsin

Replacement

• How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

• Several policies are possible
– FIFO (first-in-first-out)

– LRU (least recently used)

– NMRU (not most recently used)

– Pseudo-random (yes, really!)

• Pick victim within set where a = associativity
– If a <= 2, LRU is cheap and easy (1 bit)

– If a > 2, it gets harder

– Pseudo-random works pretty well for caches

41 Mikko Lipasti-University of Wisconsin

Write Policy

• Memory hierarchy

– 2 or more copies of same block

• Main memory and/or disk

• Caches

• What to do on a write?

– Eventually, all copies must be changed

– Write must propagate to all levels

• And other processor’s caches (later)

42 Mikko Lipasti-University of Wisconsin

Write Policy

• Easiest policy: write-through
• Every write propagates directly through hierarchy

– Write in L1, L2, memory, disk (?!?)

• Why is this a bad idea?
– Very high bandwidth requirement

– Remember, large memories are slow

• Popular in real systems only to the L2
– Every write updates L1 and L2

– Beyond L2, use write-back policy

43 Mikko Lipasti-University of Wisconsin

Write Policy

• Most widely used: write-back
• Maintain state of each line in a cache

– Invalid – not present in the cache

– Clean – present, but not written (unmodified)

– Dirty – present and written (modified)

• Store state in tag array, next to address tag
– Mark dirty bit on a write

• On eviction, check dirty bit
– If set, write back dirty line to next level

– Called a writeback or castout

44 Mikko Lipasti-University of Wisconsin

Write Policy

• Complications of write-back policy
– Stale copies lower in the hierarchy

– Must always check higher level for dirty copies before
accessing copy in a lower level

• Not a big problem in uniprocessors
– In multiprocessors: the cache coherence problem

• I/O devices that use DMA (direct memory access)
can cause problems even in uniprocessors
– Called coherent I/O

– Must check caches for dirty copies before reading main
memory

45 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

0

0

0

0

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Tag Array

46 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

0

0

10 1

0

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Tag Array

47 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

0

0

10 1

0

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Tag Array

48 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

0

0

10 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Tag Array

49 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

10 1

0

10 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Tag Array

50 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

10 11 0

0

10 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Tag Array

51 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

01 11 1

0

10 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Load 0x11 010001 0/0 (lru) Miss/Evict

Tag Array

52 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

01 11 1

0

10 d 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Load 0x11 010001 0/0 (lru) Miss/Evict

Store 0x29 101001 2/0 Hit/Dirty

Tag Array

53 Mikko Lipasti-University of Wisconsin

Lecture 5 Outline

• Main Memory and Cache Review

• Caches and Replacement Policies

• Cache Coherence

– Coherence States

– Snoopy bus-based Invalidate Protocols

– Invalidate protocol optimizations

– Update Protocols (Dragon/Firefly)

– Directory protocols

– Implementation issues

 54 Mikko Lipasti-University of Wisconsin

Cache Misses and Performance

• Miss penalty
– Detect miss: 1 or more cycles

– Find victim (replace block): 1 or more cycles
• Write back if dirty

– Request block from next level: several cycles
• May need to find line from one of many caches (coherence)

– Transfer block from next level: several cycles
• (block size) / (bus width)

– Fill block into data array, update tag array: 1+ cycles

– Resume execution

• In practice: 6 cycles to 100s of cycles

55 Mikko Lipasti-University of Wisconsin

Cache Miss Rate

• Determined by:

– Program characteristics

• Temporal locality

• Spatial locality

– Cache organization

• Block size, associativity, number of sets

56 Mikko Lipasti-University of Wisconsin

Improving Locality

• Instruction text placement

– Profile program, place unreferenced or rarely
referenced paths “elsewhere”

• Maximize temporal locality

– Eliminate taken branches

• Fall-through path has spatial locality

57 Mikko Lipasti-University of Wisconsin

Improving Locality

• Data placement, access order
– Arrays: “block” loops to access subarray that fits into cache

• Maximize temporal locality

– Structures: pack commonly-accessed fields together
• Maximize spatial, temporal locality

– Trees, linked lists: allocate in usual reference order
• Heap manager usually allocates sequential addresses

• Maximize spatial locality

• Hard problem, not easy to automate:
– C/C++ disallows rearranging structure fields

– OK in Java

58 Mikko Lipasti-University of Wisconsin

Software Restructuring
• If column-major (Fortran)

– x[i+1, j] follows x [i,j] in memory

– x[i,j+1] long after x[i,j] in memory

• Poor code

for i = 1, rows

 for j = 1, columns

 sum = sum + x[i,j]

• Conversely, if row-major (C/C++)

• Poor code

for j = 1, columns

 for i = 1, rows

 sum = sum + x[i,j]

C

o
n

ti
g

u
o

u
s
 a

d
d

re
s
s
e

s

Contiguous addresses

Column Major

Row Major

59 Mikko Lipasti-University of Wisconsin

Software Restructuring
• Better column-major code

for j = 1, columns

 for i = 1, rows

 sum = sum + x[i,j]

• Optimizations - need to check if it
is valid to do them

– Loop interchange (used above)

– Merging arrays

– Loop fusion

– Blocking

C

o
n

ti
g

u
o

u
s
 a

d
d

re
s
s
e

s

60 Mikko Lipasti-University of Wisconsin

Cache Miss Rates: 3 C’s [Hill]
• Compulsory miss

– First-ever reference to a given block of memory

– Cold misses = mc : number of misses for FA infinite cache

• Capacity

– Working set exceeds cache capacity

– Useful blocks (with future references) displaced

– Capacity misses = mf - mc : add’l misses for finite FA cache

• Conflict

– Placement restrictions (not fully-associative) cause useful
blocks to be displaced

– Think of as capacity within set

– Conflict misses = ma - mf : add’l misses in actual cache
61 Mikko Lipasti-University of Wisconsin

Cache Miss Rate Effects

• Number of blocks (sets x associativity)
– Bigger is better: fewer conflicts, greater capacity

• Associativity
– Higher associativity reduces conflicts

– Very little benefit beyond 8-way set-associative

• Block size
– Larger blocks exploit spatial locality

– Usually: miss rates improve until 64B-256B

– 512B or more miss rates get worse
• Larger blocks less efficient: more capacity misses

• Fewer placement choices: more conflict misses

62 Mikko Lipasti-University of Wisconsin

Cache Miss Rate

• Subtle tradeoffs between cache organization
parameters
– Large blocks reduce compulsory misses but increase

miss penalty
• #compulsory ~= (working set) / (block size)
• #transfers = (block size)/(bus width)

– Large blocks increase conflict misses
• #blocks = (cache size) / (block size)

– Associativity reduces conflict misses
– Associativity increases access time

• Can associative cache ever have higher miss rate
than direct-mapped cache of same size?

63 Mikko Lipasti-University of Wisconsin

Cache Miss Rates: 3 C’s

• Vary size and associativity
– Compulsory misses are constant
– Capacity and conflict misses are reduced

0

1

2

3

4

5

6

7

8

9

8K1W 8K4W 16K1W 16K4W

M
is

s
p

er
 In

st
ru

ct
io

n
 (%

)

Conflict

Capacity

Compulsory

64 Mikko Lipasti-University of Wisconsin

Cache Miss Rates: 3 C’s

• Vary size and block size
– Compulsory misses drop with increased block size
– Capacity and conflict can increase with larger blocks

0

1

2

3

4

5

6

7

8

8K32B

8K64B

16K32B

16K64B

M
is

s
p

er
 In

st
ru

ct
io

n
 (%

)

Conflict

Capacity

Compulsory

65 Mikko Lipasti-University of Wisconsin

Multilevel Caches

• Ubiquitous in high-performance processors

– Gap between L1 (core frequency) and main memory too high

– Level 2 usually on chip, level 3 on or off-chip, level 4 off chip

• Inclusion in multilevel caches

– Multi-level inclusion holds if L2 cache is superset of L1

– Can handle virtual address synonyms

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop

– Makes L1 writes simpler

• For both write-through and write-back

66 Mikko Lipasti-University of Wisconsin

Multilevel Inclusion

• Example: local LRU not sufficient to guarantee
inclusion

– Assume L1 holds two and L2 holds three blocks

– Both use local LRU

• Final state: L1 contains 1, L2 does not

– Inclusion not maintained

• Different block sizes also complicate inclusion

P
1

4

2

3

4

1,2,1,3,1,4 1,2,3,4

67 Mikko Lipasti-University of Wisconsin

Multilevel Inclusion

• Inclusion takes effort to maintain

– Make L2 cache have bits or pointers giving L1 contents

– Invalidate from L1 before replacing from L2

– In example, removing 1 from L2 also removes it from L1

• Number of pointers per L2 block

– L2 blocksize/L1 blocksize

• Supplemental reading: [Wang, Baer, Levy ISCA 1989]

P
1

4

2

3

4

1,2,1,3,1,4 1,2,3,4

68 Mikko Lipasti-University of Wisconsin

Multilevel Miss Rates

• Miss rates of lower level caches

– Affected by upper level filtering effect

– LRU becomes LRM, since “use” is “miss”

– Can affect miss rates, though usually not important

• Miss rates reported as:

– Miss per instruction

– Global miss rate

– Local miss rate

– “Solo” miss rate

• L2 cache sees all references (unfiltered by L1)

69 Mikko Lipasti-University of Wisconsin

Mikko Lipasti-University of Wisconsin 70

Cache Design: Four Key Issues

• These are:
– Placement

• Where can a block of memory go?

– Identification
• How do I find a block of memory?

– Replacement
• How do I make space for new blocks?

– Write Policy
• How do I propagate changes?

• Consider these for caches
– Usually SRAM

• Also apply to main memory, disks

Mikko Lipasti-University of Wisconsin 71

Replacement

• Cache has finite size

– What do we do when it is full?

• Analogy: desktop full?

– Move books to bookshelf to make room

– Bookshelf full? Move least-used to library

– Etc.

• Same idea:

– Move blocks to next level of cache

Mikko Lipasti-University of Wisconsin 72

Replacement

• How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

• Many policies are possible
– FIFO (first-in-first-out)

– LRU (least recently used), pseudo-LRU

– LFU (least frequently used)

– NMRU (not most recently used)

– NRU

– Pseudo-random (yes, really!)

– Optimal

– Etc

Mikko Lipasti-University of Wisconsin 73

Optimal Replacement Policy?
[Belady, IBM Systems Journal, 1966]

• Evict block with longest reuse distance
– i.e. next reference to block is farthest in future
– Requires knowledge of the future!

• Can’t build it, but can model it with trace
– Process trace in reverse
– [Sugumar&Abraham] describe how to do this in

one pass over the trace with some lookahead
(Cheetah simulator)

• Useful, since it reveals opportunity
– (X,A,B,C,D,X): LRU 4-way SA $, 2nd X will miss

Least-Recently Used

• For a=2, LRU is equivalent to NMRU

– Single bit per set indicates LRU/MRU

– Set/clear on each access

• For a>2, LRU is difficult/expensive

– Timestamps? How many bits?

• Must find min timestamp on each eviction

– Sorted list? Re-sort on every access?

• List overhead: log2(a) bits /block

– Shift register implementation
Mikko Lipasti-University of Wisconsin 74

Practical Pseudo-LRU

• Rather than true LRU, use binary tree

• Each node records which half is older/newer

• Update nodes on each reference

• Follow older pointers to find LRU victim

75

0

0

1
0

1

1

1

J

F

C

B

X

Y

A

Z

Older

Newer

Mikko Lipasti-University of Wisconsin

Practical Pseudo-LRU In Action

76

J

F

C

B

X

Y

A

Z

J Y X Z B C F A

011: PLRU
Block B is here

110: MRU
block is here

Z < A Y < X B < C J < F

A > X C < F

A > F

B C F A

J

Y X

Z

Partial Order Encoded in Tree:

Mikko Lipasti-University of Wisconsin

Practical Pseudo-LRU

• Binary tree encodes PLRU partial order

– At each level point to LRU half of subtree

• Each access: flip nodes along path to block

• Eviction: follow LRU path

• Overhead: (a-1)/a bits per block 77

0

0

1
0

1

1

1

J

F

C

B

X

Y

A

Z

011: PLRU
Block B is here

110: MRU
block is here

Older

Newer

Refs: J,Y,X,Z,B,C,F,A

Mikko Lipasti-University of Wisconsin

True LRU Shortcomings
• Streaming data/scans: x0, x1, …, xn

– Effectively no temporal reuse

• Thrashing: reuse distance > a

– Temporal reuse exists but LRU fails

• All blocks march from MRU to LRU

– Other conflicting blocks are pushed out

• For n>a no blocks remain after scan/thrash

– Incur many conflict misses after scan ends

• Pseudo-LRU sometimes helps a little bit
78 Mikko Lipasti-University of Wisconsin

Segmented or Protected LRU
[I/O: Karedla, Love, Wherry, IEEE Computer 27(3), 1994]

[Cache: Wilkerson, Wade, US Patent 6393525, 1999]

• Partition LRU list into filter and reuse lists

• On insert, block goes into filter list

• On reuse (hit), block promoted into reuse list

• Provides scan & some thrash resistance

– Blocks without reuse get evicted quickly

– Blocks with reuse are protected from scan/thrash
blocks

• No storage overhead, but LRU update slightly
more complicated

79 Mikko Lipasti-University of Wisconsin

Protected LRU: LIP
• Simplified variant of this idea: LIP

– Qureshi et al. ISCA 2007

• Insert new blocks into LRU position, not
MRU position

– Filter list of size 1, reuse list of size (a-1)

• Do this adaptively: DIP

• Use set dueling to decide LIP vs. LRU

– 1 (or a few) set uses LIP vs. 1 that uses LRU

– Compare hit rate for sets

– Set policy for all other sets to match best set
80 Mikko Lipasti-University of Wisconsin

Not Recently Used (NRU)
• Keep NRU state in 1 bit/block

– Bit is set to 0 when installed (assume reuse)

– Bit is set to 0 when referenced (reuse observed)

– Evictions favor NRU=1 blocks

– If all blocks are NRU=0

• Eviction forces all blocks in set to NRU=1

• Picks one as victim (can be pseudo-random, or rotating, or fixed left-
to-right)

• Simple, similar to virtual memory clock algorithm

• Provides some scan and thrash resistance
– Relies on “randomizing” evictions rather than strict LRU order

• Used by Intel Itanium, Sparc T2

Mikko Lipasti-University of Wisconsin 81

Least Frequently Used

• Counter per block, incremented on reference

• Evictions choose lowest count

– Logic not trivial (a2 comparison/sort)

• Storage overhead

– 1 bit per block: same as NRU

– How many bits are helpful?

Mikko Lipasti-University of Wisconsin 82

Mikko Lipasti-University of Wisconsin 83

Pitfall: Cache Filtering Effect

 Upper level caches (L1, L2) hide reference
stream from lower level caches

 Blocks with “no reuse” @ LLC could be very hot
(never evicted from L1/L2)

 Evicting from LLC often causes L1/L2 eviction
(due to inclusion)

 Could hurt performance even if LLC miss rate
improves

84

Replacement Policy Summary
 Replacement policies affect capacity and conflict

misses

 Policies covered:

 Belady’s optimal replacement

 Least-recently used (LRU)

 Practical pseudo-LRU (tree LRU)

 Protected LRU

 LIP/DIP variant

 Set dueling to dynamically select policy

 Not-recently-used (NRU) or clock algorithm

 Least frequently used (LFU)
Mikko Lipasti-University of Wisconsin

Cache Replacement Championships

• First: held at ISCA 2010

– http://www.jilp.org/jwac-1

• Second: to be held at ISCA 2017

– http://crc2.ece.tamu.edu

• Good option for a course project

– Focus on MP cases

85 Mikko Lipasti-University of Wisconsin

http://www.jilp.org/jwac-1
http://www.jilp.org/jwac-1
http://www.jilp.org/jwac-1
http://crc2.ece.tamu.edu/

Replacement Policy References
S. Bansal and D. S. Modha. “CAR: Clock with Adaptive Replacement”, In FAST, 2004.

A. Basu et al. “Scavenger: A New Last Level Cache Architecture with Global Block Priority”.
In Micro-40, 2007.

L. A. Belady. A study of replacement algorithms for a virtual-storage computer. In IBM
Systems journal, pages 78–101, 1966.

M. Chaudhuri. “Pseudo-LIFO: The Foundation of a New Family of Replacement Policies for
Last-level Caches”. In Micro, 2009.

F. J. Corbat´o, “A paging experiment with the multics system,” In Honor of P. M. Morse, pp.
217–228, MIT Press, 1969.

A. Jaleel, et al. “Adaptive Insertion Policies for Managing Shared Caches”. In PACT, 2008.

S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency set replacement policy
to improve buffer cache performance,” in Proc. ACM SIGMETRICS Conf., 2002.

T. Johnson and D. Shasha, “2Q: A low overhead high performance buffer management
replacement algorithm,” in VLDB Conf., 1994.

S. Kaxiras et al. Cache decay: exploiting generational behavior to reduce cache leakage
power. In ISCA-28, 2001.

A. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block correlating prefetchers. In
ISCA-28, 2001

D. Lee et al. “LRFU: A spectrum of policies that subsumes the least recently used and least
frequently used policies,” IEEE Trans.Computers, vol. 50, no. 12, pp. 1352–1360, 2001.

86 Mikko Lipasti-University of Wisconsin

Lecture 5 Outline

• Main Memory and Cache Review

• Caches and Replacement Policies

• Cache Coherence

– Coherence States

– Snoopy bus-based Invalidate Protocols

– Invalidate protocol optimizations

– Update Protocols (Dragon/Firefly)

– Directory protocols

– Implementation issues

 87 Mikko Lipasti-University of Wisconsin

Cache Coherence Problem

P0 P1
Load A

A 0

Load A

A 0

Store A<= 1

1

Load A

Memory

88 Mikko Lipasti-University of Wisconsin

Cache Coherence Problem

P0 P1
Load A

A 0

Load A

A 0

Store A<= 1

Memory

1

Load A

A 1

89 Mikko Lipasti-University of Wisconsin

Possible Causes of Incoherence
• Sharing of writeable data

– Cause most commonly considered

• Process migration

– Can occur even if independent jobs are executing

• I/O

– Often fixed via O/S cache flushes

90 Mikko Lipasti-University of Wisconsin

Cache Coherence
• Informally, with coherent caches: accesses to a

memory location appear to occur
simultaneously in all copies of the memory
location

 “copies” caches

• Cache coherence suggests an absolute time
scale -- this is not necessary

–What is required is the "appearance" of
coherence... not absolute coherence

–E.g. temporary incoherence between memory and
a write-back cache may be OK.

91 Mikko Lipasti-University of Wisconsin

Update vs.
Invalidation

Protocols

• Coherent Shared
Memory
– All processors see

the effects of
others’ writes

• How/when writes
are propagated
– Determine by

coherence
protocol

92 Mikko Lipasti-University of Wisconsin

Global Coherence States

• A memory line can be present (valid) in any of the caches and/or
memory

• Represent global state with an N+1 element vector

– First N components => cache states (valid/invalid)

– N+1st component => memory state (valid/invalid)

• Example:

 Line A: <1,1,0,1>

 Line B: <1,0,0,0>

 Line C: <0,0,0,1>

Memory

Cache 0 Cache 1

line A: V

line B: I

line C: V

line A

line B

line A

Cache 2

93 (c) 2007 Jim Smith

Local Coherence States
• Individual caches can maintain a summary of the state of memory

lines, from a “local” perspective

– Reduces storage for maintaining state

– May have only partial information

• Invalid (I): <0,X,X,X....X> -- local cache does not have a valid copy; (cache
miss)

– Don’t confuse invalid state with empty frame

• Shared (S): <1,X,X,X,…,1> -- local cache has a valid copy, main memory has a
valid copy, other caches ??

• Modified(M): <1,0,0,..0,…0> -- local cache has only valid copy.

• Exclusive(E): <1,0,0,..0,…1> -- local cache has a valid copy, no other caches
do, main memory has a valid copy.

• Owned(O): <1,X,X,X,….X> -- local cache has a valid copy, all other caches and
memory may have a valid copy.

– Only one cache can be in O state

– <1,X,1,X,… 0> is included in O, but not included in any of the others.

94 (c) 2007 Jim Smith

Example
Memory

Cache 0 Cache 1

line A: V
line B: I
line C: V

line A
line B

line A

Cache 2

Memory

Cache 0 Cache 1

line A: V

line B: I

line C: V

line A: S

line B: M

line C: I

line A: S

line B: I

line C: I

Cache 2

line A: I

line B: I

line C: I

95 (c) 2007 Jim Smith

Snoopy Cache Coherence
• All requests broadcast on bus
• All processors and memory snoop and respond
• Cache blocks writeable at one processor or read-

only at several
– Single-writer protocol

• Snoops that hit dirty lines?
– Flush modified data out of cache

– Either write back to memory, then satisfy remote miss
from memory, or

– Provide dirty data directly to requestor

– Big problem in MP systems
• Dirty/coherence/sharing misses

96 Mikko Lipasti-University of Wisconsin

Bus-Based Protocols

• Protocol consists of
states and actions
(state transitions)

• Actions can be
invoked from
processor or bus

Cache

Controller
Cache Data

Processor

Bus

Processor Actions

Bus Actions

State Tags

97 (c) 2007 Jim Smith

Minimal Coherence Protocol

• Blocks are always
private or exclusive

• State transitions:
– Local read: I->M, fetch,

invalidate other copies

– Local write: I->M,
fetch, invalidate other
copies

– Evict: M->I, write back
data

– Remote read: M->I,
write back data

– Remote write: M->I,
write back data

Valid
(M)

Invalid
(I)

Local
Read or
Local
Write

Evict or
Remote
Read or
Remote
Write

Local Read or
Local Write

Tag State Data

A M …

B I …

Cache

98 Mikko Lipasti-University of Wisconsin

Invalidate Protocol Optimization

• Observation: data often read shared by multiple CPUs
– Add S (shared) state to protocol: MSI

• State transitions:
– Local read: I->S, fetch shared

– Local write: I->M, fetch modified; S->M, invalidate other copies

– Remote read: M->I, write back data

– Remote write: M->I, write back data

99 Mikko Lipasti-University of Wisconsin

Simple Coherence
Protocol FSM

[Source: Patterson/Hennessy, Comp. Org. &
Design]

100 Mikko Lipasti-University of Wisconsin

101

MSI Protocol
Action and Next State

Current

State

 Processor

 Read

 Processor

 Write

 Eviction Cache

Read

 Cache

Read&M

Cache

Upgrade

I Cache Read

Acquire

Copy

→ S

Cache Read&M

Acquire Copy

→ M

 No Action

→ I

No Action

→ I

No Action

→ I

S No Action

→ S

Cache Upgrade

→ M

No Action

→ I

No Action

→ S

Invalidate

Frame

→ I

Invalidate

Frame

→ I

M No Action

→ M

No Action

→ M

Cache

Write

back

→ I

Memory

inhibit;

Supply

data;

→ S

Invalidate

Frame;

Memory

inhibit;

Supply data;

→ I

(c) 2007 Jim Smith

MSI Example

• If line is in no cache
– Read, modify, Write requires 2 bus transactions
– Optimization: add Exclusive state

Thread Event Bus Action Data From Global State Local States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> S I I

2. T0 write→ CU <1,0,0,0> M I I

3. T2 read→ CR C0 <1,0,1,1> S I S

4. T1 write→ CRM Memory <0,1,0,0> I M I

102 (c) 2007 Jim Smith

Invalidate Protocol Optimizations

• Observation: data can be write-private (e.g. stack frame)
– Avoid invalidate messages in that case

– Add E (exclusive) state to protocol: MESI

• State transitions:
– Local read: I->E if only copy, I->S if other copies exist

– Local write: E->M silently, S->M, invalidate other copies

103 Mikko Lipasti-University of Wisconsin

MESI Protocol
• Variation used in many Intel processors
• 4-State Protocol

– Modified: <1,0,0…0>

– Exclusive: <1,0,0,…,1>

– Shared: <1,X,X,…,1>

– Invalid: <0,X,X,…X>

• Bus/Processor Actions

– Same as MSI

• Adds shared signal to indicate if other caches have a copy

104 (c) 2007 Jim Smith

105

MESI Protocol
Action and Next State

Current

State

 Processor

 Read

 Processor

 Write

 Eviction Cache

Read

 Cache

Read&M

Cache

Upgrade

I Cache

Read

If no

sharers:

→ E

If sharers:

→ S

Cache Read&M

→ M

 No Action

→ I

No Action

→ I

No Action

→ I

S No Action

→ S

Cache Upgrade

→ M

No Action

→ I

Respond

Shared:

→ S

No Action

→ I

No Action

→ I

E No Action

→ E

No Action

 → M

No Action

→ I

Respond

Shared;

→ S

No Action

→ I

M No Action

→ M

No Action

→ M

Cache

Write-back

→ I

Respond

dirty;

Write back

data;

→ S

Respond

dirty;

Write back

data;

→ I
(c) 2007 Jim Smith

MESI Example

Thread Event Bus

Action

Data From Global State Local States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

106 (c) 2007 Jim Smith

Cache-to-cache Transfers

• Common in many workloads:
– T0 writes to a block: <1,0,…,0> (block in M state in T0)
– T1 reads from block: T0 must write back, then T1 reads from memory

• In shared-bus system

– T1 can snarf data from the bus during the writeback
– Called cache-to-cache transfer or dirty miss or intervention

• Without shared bus
– Must explicitly send data to requestor and to memory (for writeback)

• Known as the 4th C (cold, capacity, conflict, communication)

107 (c) 2007 Jim Smith

MESI Example 2

Thread Event Bus

Action

Data From Global State Local States:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

3. T1 read→ CR C0 <1,1,0,1> S S I

4. T2 read→ CR Memory <1,1,1,1> S S S

108 (c) 2007 Jim Smith

MOESI Optimization

• Observation: shared ownership prevents cache-to-cache
transfer, causes unnecessary memory read
– Add O (owner) state to protocol: MOSI/MOESI
– Last requestor (or last writer) becomes the owner
– Avoid writeback (to memory) of dirty data
– Also called shared-dirty state, since memory is stale

109 Mikko Lipasti-University of Wisconsin

MOESI Protocol
• Used in AMD Opteron
• 5-State Protocol

– Modified: <1,0,0…0>
– Exclusive: <1,0,0,…,1>
– Shared: <1,X,X,…,1>
– Invalid: <0,X,X,…X>
– Owned: <1,X,X,X,0> ; only one owner, memory not up to date

• Owner can supply data, so memory does not have to
– Avoids lengthy memory access

110 (c) 2007 Jim Smith

111

MOESI Protocol
Action and Next State

Current

State

 Processor

 Read

 Processor

 Write

 Eviction Cache Read Cache Read&M Cache

Upgrade

I Cache Read

 If no sharers:

→ E

If sharers:

→ S

Cache Read&M

→ M

 No Action

→ I

No Action

→ I

No

Action

→ I

S No Action

→ S

Cache Upgrade

→ M

No Action

→ I

Respond

shared;

→ S

No Action

→ I

No

Action

→ I

E No Action

→ E

No Action

→ M

No Action

→ I

Respond

shared;

Supply data;

→ S

Respond

shared;

Supply data;

→ I

O No Action

→ O

Cache

Upgrade

→ M

Cache

Write-back

→ I

Respond

shared;

Supply data;

→ O

Respond

shared;

Supply data;

→ I

M No Action

→ M

No Action

→ M

Cache

Write-back

→ I

Respond

shared;

Supply data;

→ O

Respond

shared;

Supply data;

→ I

(c) 2007 Jim Smith

MOESI Example

Thread Event Bus Action Data From Global State local states

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

3. T2 read→ CR C0 <1,0,1,0> O I S

4. T1 write→ CRM C0 <0,1,0,0> I M I

112 (c) 2007 Jim Smith

Further Optimizations

• Observation: Shared blocks should only be fetched from
memory once
– If I find a shared block on chip, forward the block
– Problem: multiple shared blocks possible, who forwards?

• Everyone? Power/bandwidth wasted

– Single forwarder, but who?
• Last one to receive block: F state
• I->F for requestor, F->S for forwarder

– What if F block is evicted?
• Favor F blocks in replacement?
• Don’t allow silent eviction (force some other node to be F)
• Fall back on memory copy if can’t find F copy

• IBM protocols do something very similar
• Intel has also adopted F state in recent designs (QPI)

113 Mikko Lipasti-University of Wisconsin

Further Optimizations

• Observation: migratory data often “flies by”
– Add T (transition) state to protocol
– Tag is still valid, data isn’t
– Data can be snarfed as it flies by
– Only works with certain kinds of interconnect networks
– Replacement policy issues

• Many other optimizations are possible
– Literature extends 25 years back
– Many unpublished (but implemented) techniques as well

114 Mikko Lipasti-University of Wisconsin

Update Protocols
• Basic idea:

– All writes (updates) are made visible to all caches:
• (address,value) tuples sent “everywhere”
• Similar to write-through protocol for uniprocessor caches

– Obviously not scalable beyond a few processors
– No one actually builds machines this way

• Simple optimization
– Send updates to memory/directory
– Directory propagates updates to all known copies: less bandwidth

• Further optimizations: combine & delay
– Write-combining of adjacent updates (if consistency model allows)
– Send write-combined data
– Delay sending write-combined data until requested

• Logical end result
– Writes are combined into larger units, updates are delayed until needed
– Effectively the same as invalidate protocol

• Of historical interest only (Firefly and Dragon protocols)

115 Mikko Lipasti-University of Wisconsin

Update vs Invalidate
• [Weber & Gupta, ASPLOS3]

– Consider sharing patterns

• No Sharing

– Independent threads

– Coherence due to thread migration

– Update protocol performs many wasteful updates

• Read-Only

– No significant coherence issues; most protocols work well

• Migratory Objects

– Manipulated by one processor at a time

– Often protected by a lock

– Usually a write causes only a single invalidation

– E state useful for Read-modify-Write patterns

– Update protocol could proliferate copies

116 Mikko Lipasti-University of Wisconsin

Update vs Invalidate, contd.
• Synchronization Objects

– Locks
– Update could reduce spin traffic invalidations
– Test&Test&Set w/ invalidate protocol would work well

• Many Readers, One Writer
– Update protocol may work well, but writes are relatively rare

• Many Writers/Readers
– Invalidate probably works better
– Update will proliferate copies

• What is used today?
– Invalidate is dominant
– CMP has not changed this assessment

• Even with plentiful on-chip bandwidth

117 Mikko Lipasti-University of Wisconsin

Nasty Realities

• State diagram is for (ideal) protocol assuming
instantaneous and actions

• In reality controller implements more complex diagrams

– A protocol state transition may be started by controller when
bus activity changes local state

– Example: an upgrade pending (for bus) when an invalidate for
same line arrives

118 Mikko Lipasti-University of Wisconsin

Example: MSI (SGI-Origin-like, directory, invalidate)

119

Stable States

Mikko Lipasti-University of Wisconsin

Example: MSI (SGI-Origin-like, directory, invalidate)

120

Stable States

Busy States

Mikko Lipasti-University of Wisconsin

Cache coherence complexity

121 [Lepak Thesis, ‘03]

L2 MOETSI Transitions

Mikko Lipasti-University of Wisconsin

Implementing Cache Coherence
• Snooping implementation

– Origins in shared-memory-bus systems

– All CPUs could observe all other CPUs requests on the bus;
hence “snooping”
• Bus Read, Bus Write, Bus Upgrade

– React appropriately to snooped commands
• Invalidate shared copies

• Provide up-to-date copies of dirty lines
– Flush (writeback) to memory, or

– Direct intervention (modified intervention or dirty miss)

• Snooping suffers from:
– Scalability: shared busses not practical

– Ordering of requests without a shared bus

– Lots of recent and on-going work on scaling snoop-based
systems

122 Mikko Lipasti-University of Wisconsin

Snooping Cache Coherence
• Basic idea: broadcast snoop to all caches to find owner
• Not scalable?

– Address traffic roughly proportional to square of number of
processors

– Current implementations scale to 64/128-way (Sun/IBM) with
multiple address-interleaved broadcast networks

• Inbound snoop bandwidth: big problem

OutboundSnoopRate so CacheMissRate BusUpgradeRate += =

InboundSnoopRate si n so= =

123 Mikko Lipasti-University of Wisconsin

Snoop Bandwidth
 Snoop filtering of various kinds is possible
 Filter snoops at sink: Jetty filter [Moshovos et al., HPCA 2001]

– Check small “filter cache” that summarizes contents of local
cache

– Avoid power-hungry lookups in each tag array

 Filter snoops at source: Multicast snooping [Bilir et al., ISCA 1999]

– Predict likely sharing set, snoop only predicted sharers
– Double-check at directory to make sure

 Filter snoops at source: Region coherence
– Concurrent work: [Cantin/Smith/Lipasti, ISCA 2005; Moshovos, ISCA 2005]

– Check larger region of memory on every snoop; remember
when no sharers

– Snoop only on first reference to region, or when region is shared
– Eliminate 60%+ of all snoops

124 Mikko Lipasti-University of Wisconsin

Snoop Latency

 Snoop latency:
– Must reach all nodes, return and combine responses
– Topology matters: ring, mesh, torus, hypercube
– No obvious solutions

 Parallelism: fundamental advantage of snooping
– Broadcast exposes parallelism, enables speculative latency

reduction

LDir RDirXSnp XRsp CRsp RDatXRd XDat UDat

RDat XDat UDat

RDat XDat UDat

RDat XDat UDat

125 Mikko Lipasti-University of Wisconsin

Scaleable Cache Coherence
• No physical bus but still snoop

– Point-to-point tree structure (indirect) or ring

– Root of tree or ring provide ordering point

– Use some scalable network for data (ordering less
important)

• Or, use level of indirection through directory
– Directory at memory remembers:

• Which processor is “single writer”

• Which processors are “shared readers”

– Level of indirection has a price
• Dirty misses require 3 hops instead of two

– Snoop: Requestor->Owner->Requestor

– Directory: Requestor->Directory->Owner->Requestor

 126 Mikko Lipasti-University of Wisconsin

Implementing Cache Coherence
• Directory implementation

– Extra bits stored in memory (directory) record state of line
– Memory controller maintains coherence based on the current state
– Other CPUs’ commands are not snooped, instead:

• Directory forwards relevant commands

– Powerful filtering effect: only observe commands that you need to
observe

– Meanwhile, bandwidth at directory scales by adding memory
controllers as you increase size of the system
• Leads to very scalable designs (100s to 1000s of CPUs)

• Directory shortcomings
– Indirection through directory has latency penalty
– If shared line is dirty in other CPU’s cache, directory must forward

request, adding latency
– This can severely impact performance of applications with heavy

sharing (e.g. relational databases)

127 Mikko Lipasti-University of Wisconsin

Directory Protocol Implementation
• Basic idea: Centralized directory keeps track of data

location(s)
• Scalable

– Address traffic roughly proportional to number of processors
– Directory & traffic can be distributed with memory banks

(interleaved)
– Directory cost (SRAM) or latency (DRAM) can be prohibitive

• Presence bits track sharers
– Full map (N processors, N bits): cost/scalability
– Limited map (limits number of sharers)
– Coarse map (identifies board/node/cluster; must use broadcast)

• Vectors track sharers
– Point to shared copies
– Fixed number, linked lists (SCI), caches chained together
– Latency vs. cost vs. scalability

128 Mikko Lipasti-University of Wisconsin

Directory Protocol Latency

• Access to non-shared data
– Overlap directory read with data read
– Best possible latency given distributed memory

• Access to shared data
– Dirty miss, modified intervention
– Shared intervention?

• If DRAM directory, no gain
• If directory cache, possible gain (use F state)

– No inherent parallelism
– Indirection adds latency
– Minimum 3 hops, often 4 hops

LDir RDirXSnp XRd RDat UDatXDat

129 Mikko Lipasti-University of Wisconsin

Directory-based Cache Coherence

• An alternative for large, scalable
MPs

• Can be based on any of the
protocols discussed thus far
–We will use MSI

• Memory Controller becomes an
active participant

• Sharing info held in memory
directory
–Directory may be distributed

• Use point-to-point messages

• Network is not totally ordered

Cache

Processor

Interconnection Network

Memory

Module

Directory

Cache

Processor

Memory

Module

Directory

Cache

Processor

Memory

Module

Directory

. . .

. . .

130 (c) 2007 Jim Smith

Example: Simple Directory Protocol
• Local cache controller states

– M, S, I as before

• Local directory states
– Shared: <1,X,X,…1>; one or more proc. has copy; memory

is up-to-date

– Modified: <0,1,0,….,0> one processor has copy; memory
does not have a valid copy

– Uncached: <0,0,…0,1> none of the processors has a valid
copy

• Directory also keeps track of sharers
– Can keep global state vector in full

– e.g. via a bit vector

131 (c) 2007 Jim Smith

Example

• Local cache suffers load miss

• Line in remote cache in M state
– It is the owner

• Four messages send over network
–Cache read from local controller to

home memory controller

–Memory read to remote cache
controller

–Owner data back to memory
controller; change state to S

–Memory data back to local cache;
change state to S

 . . .

. . .
Cache

Processor

Owner

Controller
Cache

Processor

Local

Controller
Cache

Processor

Remote

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

processor

read

cache

read

memory

read

owner

data

response

memory

data

response Interconnect

132 (c) 2007 Jim Smith

Cache Controller State Table
Cache Controller

Actions and Next States

from Processor Side from Memory Side

Current

State

Processor

 Read

 Processor

 Write

 Eviction Memory

Read

Memory

Read&M

 Memory

 Invalidate

Memory

Upgrade

Memory Data

I Cache

Read

→ I'

Cache

Read&M

→ I''

 No Action

→ I

S No

Action

→ S

Cache

Upgrade

→ S'

No

Action*

→ I

 Invalidate

Frame;

Cache ACK;

→ I

M No

Action

→ M

No Action

→ M

Cache

Write-

back

→ I

Owner

Data;

→ S

Owner

Data;

→ I

Invalidate

Frame;

Cache ACK;

→ I

I' Fill Cache

→ S

I'' Fill Cache

→ M

S' No

Action

→ M

133 (c) 2007 Jim Smith

Memory Controller State Diagram
Memory Controller

Actions and Next States

command from Local Cache Controller response from Remote Cache Controller

Current

Directory

State

 Cache

 Read

Cache Read&M Cache

Upgrade

 Data

Write-back

Cache ACK Owner

Data

U Memory Data;

Add Requestor to

Sharers;

→ S

Memory Data;

Add Requestor to

Sharers;

→ M

S Memory Data;

Add Requestor to

Sharers;

→ S

Memory

Invalidate All

Sharers;

→ M'

Memory

Upgrade

All Sharers;

→ M''

 No Action

→ I

M Memory Read

 from Owner;

→ S'

Memory Read&M;

to Owner

→ M'

Make Sharers

Empty;

→ U

S' Memory Data

 to Requestor;

Write memory;

Add Requestor to

Sharers;

→ S

M' When all

ACKS

Memory Data;

→ M

Memory Data

 to Requestor;

→ M

M'' When all

ACKS then

→ M

134 (c) 2007 Jim Smith

Another Example

• Local write (miss) to shared line

• Requires invalidations and acks

Memory

Banks

Directory

Home Memory

Controller

. . .

. . .
Cache

Processor

Remote

Controller
Cache

Processor

Local

Controller
Cache

Processor

Remote

Controller

Memory

Banks

Directory

Memory

Controller

Memory

Banks

Directory

Memory

Controller

processor

write

cache

Read&M

memory

invalidate

cache

ack
memory

data

response Interconnect

cache

ack

135 (c) 2007 Jim Smith

Example Sequence

• Similar to earlier sequences

Thread Event Controller

 Actions

Data From global state local states:

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR,MD Memory <1,0,0,1> S I I

2. T0 write→ CU, MU*,MD <1,0,0,0> M I I

3. T2 read→ CR,MR,MD C0 <1,0,1,1> S I S

4. T1 write→ CRM,MI,CA,MD Memory <0,1,0,0> I M I

136 (c) 2007 Jim Smith

Variation: Three Hop Protocol

• Have owner send data directly to local controller

• Owner Acks to Memory Controller in parallel

Local

Controller

Owner

Controller

Memory

Controller

cache

read

memory

read

owner

data

memory

data

1 2

3

4

Local

Controller

Owner

Controller

Memory

Controller

cache

read

memory

read

owner

data

owner

ack1 2
3

3

a) b)

137 (c) 2007 Jim Smith

Directory Protocol Optimizations

• Remove dead blocks from cache:
– Eliminate 3- or 4-hop latency
– Dynamic Self-Invalidation [Lebeck/Wood, ISCA 1995]

– Last touch prediction [Lai/Falsafi, ISCA 2000]

– Dead block prediction [Lai/Fide/Falsafi, ISCA 2001]

• Predict sharers
– Prediction in coherence protocols [Mukherjee/Hill, ISCA 1998]

– Instruction-based prediction [Kaxiras/Goodman, ISCA 1999]

– Sharing prediction [Lai/Falsafi, ISCA 1999]

• Hybrid snooping/directory protocols
– Improve latency by snooping, conserve bandwidth with directory
– Multicast snooping [Bilir et al., ISCA 1999; Martin et al., ISCA 2003]

– Bandwidth-adaptive hybrid [Martin et al., HPCA 2002]

– Token Coherence [Martin et al., ISCA 2003]

– Virtual Tree Coherence [Enright Jerger MICRO 2008]

138 (c) 2007 Jim Smith

Protocol Races
• Atomic bus

– Only stable states in protocol (e.g. M, S, I)

– All state transitions are atomic (I->M)

– No conflicting requests can interfere since bus is held till transaction
completes

• Distinguish coherence transaction from data transfer

• Data transfer can still occur much later; easier to handle this case

• Atomic buses don’t scale
– At minimum, separate bus request/response

• Large systems have broadly variable delays
– Req/resp separated by dozens of cycles

– Conflicting requests can and do get issued

– Messages may get reordered in the interconnect

• How do we resolve them?

139 Mikko Lipasti-University of Wisconsin

Example: MSI (SGI-Origin-like, directory, invalidate)

140

Stable States

Busy States

Races

“unexpected” events from

concurrent requests to

same block

Mikko Lipasti-University of Wisconsin

Resolving Protocol Races
• Req/resp decoupling introduces transient

states

– E.g. I->S is now I->ItoX->ItoS_nodata->S

• Conflicting requests to blocks in transient
states

– NAK – ugly; livelock, starvation potential

– Keep adding more transient states …

• Directory protocol makes this a bit easier

– Can order at directory, which has full state info

– Even so, messages may get reordered
141 Mikko Lipasti-University of Wisconsin

Common Protocol Races
• Read strings: P0 read, P1 read, P2 read

– Easy, since read is nondestructive

– Can rely on F state to reduce DRAM accesses

– Forward reads to previous requestor (F)

• Write strings: P0 write, P1 write, P2 write
– Forward P1 write req to P0 (M)

– P0 completes write then forwards M block to P1

– Build string of writes (write string forwarding)

• Read after write (similar to prev. WAW)

• Writeback race: P0 evicts dirty block, P1 reads
– Dirty block is in the network (no copy at P0 or at dir)

– NAK P1, or force P0 to keep copy till dir ACKs WB

• Many others crop up, esp. with optimizations

142 Mikko Lipasti-University of Wisconsin

Lecture 5 Outline

• Main Memory and Cache Review

• Caches and Replacement Policies

• Cache Coherence

– Coherence States

– Snoopy bus-based Invalidate Protocols

– Invalidate protocol optimizations

– Update Protocols (Dragon/Firefly)

– Directory protocols

– Implementation issues

 143 Mikko Lipasti-University of Wisconsin

Additional Slides

• For reference only

144 Mikko Lipasti-University of Wisconsin

Update Protocol: Dragon
• Dragon (developed at Xerox PARC)

• 5-State Protocol

– Invalid:<0,X,X,…X>

• Some say no invalid state – due to confusion regarding empty frame
versus invalid line state

– Exclusive: <1,0,0,…,1>

– Shared-Clean (Sc): <1,X,X,…X> memory may not be up-to-date

– Shared-Modified (Sm): <1,X,X,X…0> memory not up-to-date; only one
copy in Sm

– Modified: <1,0,0,…0>

• Includes Cache Update action

• Includes Cache Writeback action

• Bus includes Shared flag

– Appears to also require memory inhibit signal

– Distinguish shared case where cache (not memory) supplies data

 145 (c) 2007 Jim Smith

146

Dragon State Diagram
Action and Next State

Current

State

 Processor

 Read

 Processor

 Write

 Eviction Cache Read Cache Update

I Cache Read

 If no sharers:

→ E

If sharers:

→ Sc

Cache Read

If no sharers:

→ M

If sharers:

Cache Update

→ Sm

 → I → I

Sc No Action

→ Sc

Cache Update

If no sharers:

→M

If sharers:

→ Sm

No Action

→ I

Respond Shared;

→ Sc

Respond shared;

Update copy;

→ Sc

E No Action

→ E

No Action

→ M

No Action

→ I

Respond shared;

Supply data

→ Sc

Sm No Action

→ Sm

Cache Update

If no sharers:

→M

If sharers:

→ Sm

Cache Write-back

→ I

Respond shared;

Supply data;

→ Sm

Respond shared;

Update copy;

→ Sc

M No Action

→ M

No Action

→ M

Cache Write-back

→ I

Respond shared;

Supply data;

→ Sm
(c) 2007 Jim Smith

Example
Thread Event Bus Action Data From Global State local states

C0 C1 C2

0. Initially: <0,0,0,1> I I I

1. T0 read→ CR Memory <1,0,0,1> E I I

2. T0 write→ none <1,0,0,0> M I I

3. T2 read→ CR C0 <1,0,1,0> Sm I Sc

4. T1 write→ CR,CU C0 <1,1,1,0> Sc Sm Sc

5. T0 read→ none (hit) C0 <1,1,1,0> Sc Sm Sc

• Appears to require atomic bus cycles CR,CU on write to invalid
line

147 Mikko Lipasti-University of Wisconsin

Update Protocol: Firefly
• Develped at DEC by ex-Xerox people

• 5-State Protocol

– Similar to Dragon – different state naming based on shared/exclusive and
clean/dirty

– Invalid:<0,X,X,…X>

– EC: <1,0,0,…,1>

– SC: <1,X,X,…X> memory may not be up-to-date

– EM: <1,0,0,…0>

– SM: <1,X,X,X…0> memory not up-to-date; only one copy in Sm

• Performs write-through updates (different from Dragon)

148 Mikko Lipasti-University of Wisconsin

