
ECE/CS 757: Advanced
Computer Architecture II

Instructor:Mikko H Lipasti

Spring 2017

University of Wisconsin-Madison

Lecture notes based on slides created by John Shen,
Mark Hill, David Wood, Guri Sohi, Jim Smith, Natalie

Enright Jerger, Michel Dubois, Murali Annavaram,
Per Stenström and probably others

Lecture 6 Outline

• UNDERSTANDING CONSISTENCY MODELS
– Atomicity

– Program Ordering

– Visibility

• POPULAR CONSISTENCY MODELS

– Sequential Consistency

– IBM/370

– Processor Consistency

– SPARC TSO/PSO/RMO

– Weak Ordering

– PowerPC Weak Consistency

• VISIBILITY

• MEMORY REFERENCE REORDERING
2Mikko Lipasti-University of Wisconsin

Basics of Memory Consistency (Ordering)

• How are memory references from different processors interleaved?
• If this is not well-specified, synchronization becomes difficult or even

impossible
– ISA must specify consistency model

• Common example using Dekker’s algorithm for synchronization
– If load reordered ahead of store (as we assume for a baseline OOO CPU)
– Both Proc0 and Proc1 enter critical section, since both observe that other’s

lock variable (A/B) is not set
• If consistency model allows loads to execute ahead of stores, Dekker’s

algorithm no longer works
– Common ISAs allow this: IA-32, PowerPC, SPARC, Alpha

3Mikko Lipasti-University of Wisconsin

Sequential Consistency [Lamport 1979]

• Processors treated as if they are interleaved processes on a single
time-shared CPU

• All references must fit into a total global order or interleaving that
does not violate any CPU’s program order
– Otherwise sequential consistency not maintained

• Now Dekker’s algorithm will work
• Appears to preclude any OOO memory references

– Hence precludes any real benefit from OOO CPUs

4Mikko Lipasti-University of Wisconsin

High-Performance Sequential Consistency

• Coherent caches isolate CPUs if no sharing is
occurring

– Absence of coherence activity means CPU is free to
reorder references

• Still have to order references with respect to
misses and other coherence activity (snoops)

• Key: use speculation

– Reorder references speculatively

– Track which addresses were touched speculatively

– Force replay (in order execution) of such references
that collide with coherence activity (snoops)

5Mikko Lipasti-University of Wisconsin

High-Performance Sequential Consistency

• Load queue records all speculative loads
• Bus writes/upgrades are checked against LQ
• Any matching load gets marked for replay
• At commit, loads are checked and replayed if necessary

– Results in machine flush, since load-dependent ops must also replay
• Practically, conflicts are rare, so expensive flush is OK

6Mikko Lipasti-University of Wisconsin

Relaxed Consistency Models

• Key insight: only synchronization references need to be
ordered

• Hence, relax memory for all other references
– Enable high-performance OOO implementation

• Require programmer to label synchronization references
– Hardware must carefully order these labeled references

– All other references can be performed out of order

• Labeling schemes:
– Explicit synchronization ops (acquire/release)

– Memory fence or memory barrier ops:
• All preceding ops must finish before following ones begin

• Often: fence ops cause pipeline drain in modern OOO
machine

7Mikko Lipasti-University of Wisconsin

Why Relaxed Consistency Models?
• Original motivation

– Allow in-order processors to overlap store latency with other work

– “Other work” depends on loads, hence must let loads bypass stores and execute early:
implement a store queue

– This breaks sequential consistency assumption that all references are performed in
program order

• This led to definition of processor consistency, SPARC TSO, IBM/370

– All of these relax read-to-write program order requirement

• Subsequent developments

– It would be nice to overlap latency of one store with latency of other stores

– Allow stores to be performed out of order with respect to each other

– This breaks SC even further

• This led to definition of SPARC PSO/RMO, WO, PowerPC WC, Itanium

• What’s the problem with relaxed consistency?

– Shared memory programs can break if not written for specific cons. model

8Mikko Lipasti-University of Wisconsin

Understanding Consistency Models

• Consistency model defines how memory references are
ordered across processors/threads
– Part of the instruction set architecture

• PowerPC, SPARC, IA-32, etc. each have their own
consistency model
– In some cases, more than one!

• The program semantics will change with consistency
model
– More relaxed consistency models enable more “correct”

outcomes
– Even strict consistency models allow multiple correct outcomes

Proc0 Proc1
st A
ld B

st B
ld A

9Mikko Lipasti-University of Wisconsin

Understanding Consistency Models

• RAW dependences to/from Proc0/Proc1 may or may not
occur
– Also, WAR and WAW dependences may or may not occur
– Relatively simple set of rules governs which {RAW,WAR,WAW}

edges are required (must be observed), which ones are not
required

• Observing certain edges provides visibility to other
processors
– Hence requires us to observe (some) subsequent edges

• Causality:
– If I observe A, and B is ordered before A, I must also observe B
– Without causality, system becomes virtually impossible to

program

Proc0 Proc1
st A
ld B

st B
ld A

10Mikko Lipasti-University of Wisconsin

Constraint graph

• Defined for sequential consistency by Landin et al.,
ISCA-18

• Directed graph represents a multithreaded execution

– Nodes represent dynamic instruction instances

– Edges represent their transitive orders (program order,
RAW, WAW, WAR).

• If the constraint graph is acyclic, then the execution
is correct

– Cycle implies A must occur before B and B must occur
before A => contradiction

11Mikko Lipasti-University of Wisconsin

Constraint graph example - SC

Proc 1

ST A

Proc 2

LD A
ST B

LD BProgram
order

Program
order

WAR

RAW

Cycle indicates that
execution is incorrect

1.

2.

3.

4.

12Mikko Lipasti-University of Wisconsin

Anatomy of a cycle

Proc 1

ST A

Proc 2

LD A
ST B

LD BProgram
order

Program
order

WAR

RAW

Incoming invalidate

Cache miss

13Mikko Lipasti-University of Wisconsin

High-Performance Sequential Consistency

• Load queue records all speculative loads
• Bus writes/upgrades are checked against LQ
• Any matching load gets marked for replay
• At commit, loads are checked and replayed if necessary

– Results in machine flush, since load-dependent ops must also replay
• Practically, conflicts are rare, so expensive flush is OK

14Mikko Lipasti-University of Wisconsin

Understanding Relaxed Consistency

• Three important concepts

– Atomicity

• do writes appear at the same time to all other
processors?

– Program order

• do my references have to be ordered with respect to
each other?

– Visibility (causality)

• Does anyone care? This is the most subtle...

15Mikko Lipasti-University of Wisconsin

Possible Relaxations

• From widely cited tech report:

– [Adve/Gharachorloo, “Shared Memory
Consistency Models: A Tutorial”]

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Write to Write program order

Read others’ write early

Read own write early

16Mikko Lipasti-University of Wisconsin

Sequential Consistency

• Informally, all processors’ references are interleaved in total global
order

• Multiple total global orders are possible and correct
• Order determined in somewhat arbitrary manner

– On bus-based SMP, by order in which bus is acquired
– On directory-based system like Origin 2000, order in which requests are

acked (not order in which they arrive)
• All processors must maintain total order among their own references
• Again, key is to maintain illusion of order (visibility)

17Mikko Lipasti-University of Wisconsin

SC and ILP

• SC appears to preclude high performance, ILP (loads after
stores)

• Can use speculation and prefetching to avoid these
bottlenecks
– Prefetch load data, store ownership early

– as soon as address known and load/store issues in OOO core

• Hold off committing result until load/store has been ordered
at commit
– If conflicting remote event occurs before then, squash speculation

– conflicting event == invalidate message for matching address

• If load, refetch instruction stream
• If store, fetch line ownership again

18Mikko Lipasti-University of Wisconsin

SC and ILP

• How to support speculation and rollback?
– Simple speculation within OOO window: MIPS

R10000

– Aggressive speculation:
• Speculative retirement [Ranganathan et al., SPAA 1997]

• Speculative stores [Gniady et al., ISCA 1999]

– Kilo-instruction checkpointing:
• Safetynet [Sorin Ph.D. thesis, U. Wisconsin]

• Latencies growing to 100s of cycles, need
potentially huge speculation buffers

19Mikko Lipasti-University of Wisconsin

Recent Trends
• Many are arguing that SC is best approach

– ILP/speculation can be used to match performance of relaxed models
– Adve, Falsafi, Hill all seem to be arguing this

• Is it really true? Conventional wisdom was that SC ordering
rules must be relaxed to achieve performance

• Latencies relative to processor core are quite long in large-
scale (multisocket) systems

• Can massive, power-hungry speculation buffers really be
justified/implemented?

• Reality:
– All modern ISAs (ARM, Alpha, PowerPC, IA-64) have weak

consistency models
– Existence proof that programmers are willing to tackle the

complexity

• Even less modern ISAs (IA-32, IBM/370) have relaxed models

20Mikko Lipasti-University of Wisconsin

Recent Trends
• Recent trend toward simple processor cores

– Sun/Oracle Niagara (SPARC TSO)
– Intel Atom (Intel model, TSO-like)
– GPU shader cores

• These will not easily tolerate consistency-related
stalls
– Multithreading helps

• GPU/GPGPU vendors are sidestepping the issue
– Not really supporting shared memory
– However, atomic operations are supported

• These require a consistency model
• Usually assumed to be SC like

– As long as atomic operations are rare, this is OK

21Mikko Lipasti-University of Wisconsin

Sequential Consistency

• No reordering
allowed

• Writes must be
atomic

– Except can read
own write early

22Mikko Lipasti-University of Wisconsin

IBM/370 Consistency

• Similar to IA-32
• Read->Write

order relaxed
• Writes must

occur atomically
(others cannot
read write early)

• Cannot read own
write early! (not
true for IA-32)

23Mikko Lipasti-University of Wisconsin

Processor Consistency

• Same as
IBM/370, except
writes not
atomic

• Relax read to
write order

• Writes need not
occur atomically

24Mikko Lipasti-University of Wisconsin

SPARC TSO

• One of 3 SPARC
consistency
models
determined by
MSW mode bits

• This is the one
actually used by
real programs

• Reads may bypass
writes

• Writes must be
atomic

25Mikko Lipasti-University of Wisconsin

What Breaks?

• When relaxing read->write program order, what breaks?
– Dekker’s algorithm for mutual exclusion: initially A=B=0
– Since read of B bypasses store of A on Proc0 (and vice versa on Proc1),

mutual exclusion is no longer guaranteed:

• Neither processor sees other’s write since reads are moved up
• Both processors believe they have mutually exclusive access
• Fix?

– Programmer must insert memory barriers between store and load
– Force store to complete before load is performed
– If stores not atomic (in PC), memory barrier must force atomicity

26Mikko Lipasti-University of Wisconsin

SPARC PSO

• SPARC second
attempt at
consistency model
(not used)

• Reads may pass
writes; writes may
pass writes

• Writes must be
atomic (cannot
read other’s write
early)

27Mikko Lipasti-University of Wisconsin

What Breaks?

• When writes can pass writes in program order, what breaks?
• Producer-consumer pattern (e.g. OS control block update)

– Update control block, then set flag to tell others you are done with
your update

– Proc1 sees store of flag before it sees store of A, and reads stale copy
of A

• Fix?
– Programmer must insert store memory barrier between two stores on

Proc0
– Hardware forces st A to complete before st flag is performed

Proc0
st A=1
st flag=0

Proc1
while (flag==1) {};
print A

Store flag
bypasses
store of A

28Mikko Lipasti-University of Wisconsin

SPARC RMO

• SPARC third
attempt at a
relaxed
consistency
model

• Fully relaxed
ordering

• Writes must still
be atomic

29Mikko Lipasti-University of Wisconsin

Weak Ordering

• Equivalent to
SPARC RMO

• Used by Alpha

• Fully relaxed
ordering; writes
must be atomic

30Mikko Lipasti-University of Wisconsin

What Breaks?

• When reads can pass reads, what breaks?
– Similar example as when writes can pass writes
– Proc1 moves up read of A and reads stale value
– Usually this requires branch prediction

• Branch misprediction recovery won’t help!
– Branch was predicted correctly; flag was set to 0 by the time Proc1

reads flag

• Fix?
– Programmer must insert membar between two loads on Proc1 as well

Proc0
st A=1
membar
st flag=0

Proc1

if (flag==0)

print A

Read of A
bypasses
read of flag

31Mikko Lipasti-University of Wisconsin

What Else Breaks?

• When reads can pass reads, what else can break?
– Data dependence ordering is assumed even in weaker models
– Typical use: create new linked list entry, initialize it, insert it on head of

list
– Force update of head of list to occur last (membar)
– Expect that Proc1 won’t be able to dereference head until after its

been updated due to data dependence between ld R1 and ld R2

• Wrong! What happens with value prediction?
– Proc1 predicts value of R1, performs ld R2 with predicted R1, gets stale

data
– Then, it validates R1 predicted value by performing load of head and

values match: no value misprediction! Yet Proc1 read stale value of A

• Or, network reorders updates of head and *head

Proc0
st *A=1
membar
st head=A

Proc1

ld R1=head
ld R2=*R1

Data dependence
prevents ld R2 from
bypassing ld R1

32Mikko Lipasti-University of Wisconsin

What Else Breaks?

• Fix?
– Programmer must insert membar between two loads on

Proc1

• Cannot rely on data dependence ordering of loads
– PowerPC OK (fixed in ISA document, previously undefined)
– Alpha requires membar (will break without it) -- expensive!

• Example of incomplete ISA definition due to
assumptions about implementation
– Assume no value prediction!

• Ref: [Martin et al., MICRO 2001]

Proc0
st *A=1
membar
st head=A

Proc1

ld R1=head
ld R2=*R1

Data dependence
prevents ld R2 from
bypassing ld R1

33Mikko Lipasti-University of Wisconsin

PowerPC Weak Ordering

• Fully relaxed
ordering

• Writes need not
be atomic

34Mikko Lipasti-University of Wisconsin

What Breaks?

• When stores are no longer atomic, what breaks?
– 3-processor example required to demonstrate transitivity:
– Proc1 writes B after it sees Proc0’s write of A
– Proc2 reads A after it sees Proc1’s write of B
– Proc2 gets stale copy of A since write from Proc0 hasn’t

arrived yet

• Fix?
– Proc2’s read of A must be an atomic RMW operation (or

ll/sc), which will force it to be ordered after Proc0’s write of
A

– Note that a membar at Proc1 or a membar at Proc0 do not
help

Proc0
st A=1

Proc1
while (A==0);
st B=1

Proc2

while (B==0);
print A

(st A arrives late at Proc2)

35Mikko Lipasti-University of Wisconsin

How Do We Synchronize?
• With SC, synchronization can be accomplished with e.g.

Dekker’s algorithm, which relies on store->load ordering
• With weaker models, synchronization operations need to

be explicitly identified to the processor.
• Processor then treats synchronization operations with

stricter rules
– E.g. release consistency (RC) uses explicit “acquire” and “release”

primitives which are strongly ordered, while standard loads and
stores are weakly ordered

– Acquire and release protect mutually exclusive regions (critical
sections)
• These impose ordering fences or barriers on other memory

operations, which are otherwise unordered.

– Acquire: full memory barrier, all previous loads and stores ordered
with respect to all subsequent loads and stores, all remote stores
must be visible to subsequent loads

– Release: write memory barrier, all previous stores ordered with
respect to all subsequent stores (i.e. all critical section updates
visible to everyone before release visible).

36Mikko Lipasti-University of Wisconsin

Proc0
acquire (lock)
st A
release (lock)

Proc1

acquire(lock)
load A
store B
release (lock)

Release Consistency

• Acquire/Release pairs protect critical sections
• Without special semantics for acquire/release

– load A may not see st A due to relaxed ordering

• Instead:
– Proc0 release forces all prior writes to be visible to all other processors

before lock release is visible to anyone
– Furthermore, Proc1 acquire prevents subsequent reads or writes from

being performed before acquire has completed

• In proposed RC systems, acquire and release are special
instructions;
– Hardware knows to treat them with stricter ordering rules
– Special acquire/release instructions are not strictly necessary

37Mikko Lipasti-University of Wisconsin

Synchronization in Weak Models

• RC not actually implemented in any cache-coherent
hardware
– Lots of proposals for RC variants in software-based DSM

(SVM)

• RC can be approximated in weakly consistent
systems by providing two flavors of memory barrier
instructions
– Acquire: corresponds to full memory barrier (Alpha

membar, PowerPC sync)

– Release: corresponds to store memory barrier (Alpha
stmembar, PPC lwsync)

• Memory barriers after lock acquire and before lock
release achieve benefits of release consistency

38Mikko Lipasti-University of Wisconsin

Synchronization in Weak Models

Proc0
ll/sc pin lock
membar
st A

Proc1

ll/sc spin lock
membar
load A
st B

stmembar
st lock

stmembar
st lock

ld X

Later un-
related
load can
still move
up

• Acquire/release are programmer-annotated
with appropriate membar

39Mikko Lipasti-University of Wisconsin

Synchronization
• Burden is on programmer to protect all shared accesses with

locks, critical sections, and use acquire/release primitives

• If no acquire/release or membar instructions, then what?
– Usually fall back on atomic RMW instructions (compare-and-swap)
– These either have special ordering semantics, or force ordering

because they do both a read and a write simultaneously
– In 370/TSO/IA-32, many sync. primitives (e.g. ll/sc spin loops) work

without barriers (barriers are implicit)

• Bottom line: can’t write correct shared-memory programs in
WC systems without synchronization!
– WC rules allow arbitrary delays, meaning other processors may never

see your writes
– Synchronization ops and memory barriers force writes to be visible to

other processors

40Mikko Lipasti-University of Wisconsin

What About Visibility/Causality?
• None of these definitions clarify what is meant by visibility

(i.e. ISA spec says something like “it must appear as if R->W
order is maintained...”)

• What does this mean?
– The programmer must not be able to detect that references have been

reordered
– Or, bounds must be set on how much “slack” each reference has
– Also known as causality

• Construct a constraint graph:
– Identify all {PO,RAW,WAR,WAW} edges that have occurred between

processors (i.e. all dependences that have been observed in the past)
– These are what indicate visibility or causality to another processor’s

references
– Then determine which (if any) prior {RAW,WAR,WAW} edge implies

causality (else cycle will form)

• The rules for which types of PO (program order) edges are
present depend on the consistency model’s relaxation of rd-
>rd, wr->wr, rd->wr, etc.

41Mikko Lipasti-University of Wisconsin

4 Simple Steps to Understanding
Causality

1. Single mem ref/CPU

– Load can use any version (bind to …)

– Stores? Coherence requires total order per
address: A0, A1, A2

P0 P1 P2 P3

ld A0-2 ld A0-2

st A1

st A2

42Mikko Lipasti-University of Wisconsin

4 Simple Steps to Understanding
Causality

2. Two or more mem refs
to same address/CPU:
Causality through
coherence kicks in: two
refs must interleave into
global order correctly

i. ld A – ld A

ii. ld A – st A

iii. st A – ld A

iv. st A – st A

Store
Order

A0

A1

A2

A3

Case OK !OK Note

i ld A1 ld A2

ld A3 ld A1 A2 implies A2-3

ii ld A0 ld A2

st A1-3 st A1 A2 implies A3

iii st A2 st A2

ld A2-3 ld A1 Also 1T RAW

iv st A1 st A2

st A2-3 st A1 Also 1T WAW

43Mikko Lipasti-University of Wisconsin

4 Simple Steps to Understanding
Causality

3. Two or more mem refs
to diff address/CPU:
Causality through
consistency kicks in:
two addresses are now
synchronized

i. ld A – ld B

ii. ld A – st B

iii. st A – ld B

iv. st A – st B

Store Order

A0 B0

A1 B1

A2 B2

A3 B3

Case OK !OK Note

i ld A1 ld A2

ld B0-3 ld B0 A2 implies B1-3

ii ld A0 ld A3

st B0-3 st B1 A2 implies B2-3

iii st A2 st A2

ld B1-3 ld B0 A2 implies B1-3

iv st A0 st A3

st B0-3 st B0 A3 implies B2-3

44Mikko Lipasti-University of Wisconsin

E.g. program
order st B1->st A2

4 Simple Steps to Understanding
Causality

4. Causality extends transitively across all memory
locations and all processors in the system

P0 P1 P2 Notes (assumes SC)

st A1

st B1

ld B1 Causal RAW

st A2 st C1

ld C1 Causal RAW

st B2 ld A? Implies A1 (A2 OK also)

ld B? Implies B1 (B2 OK also)

45Mikko Lipasti-University of Wisconsin

Proc0
st A
st B

Proc1

ld B
ld A

RAW

Can ld A move up?

Causality Example

• Assuming SC
– stB -> ld B RAW edge was observed (i.e. Proc1/ld B got its value from

Proc0)
– SC ordering rules imply that all prior stores from Proc0 must now be

visible to Proc1; Proc0/st A is upper bound on slack for ld A
– Hence, Proc1/ld A must get its value from Proc0/st A

• How does the hardware track this?
– In MIPS R10000, ld A can be reordered (issued) ahead of ld B
– However, ld A is retired after ld B. Since st A/st B are performed in

order at Proc0, the fact that Proc1 observed st B before retiring ld B
implies it observed st A before it retires ld A.

– Hence, violation is detected and ld A reissues

• For this to work, writes to A and B must be ordered!

46Mikko Lipasti-University of Wisconsin

Causality Example 2

• More subtle case (Dekker’s algorithm), again assuming SC
– ld B -> st B WAR edge was observed (i.e. Proc0/ld B did not get its value

from Proc1/st B)
– SC ordering rules imply that all prior stores from Proc0 must now be

visible to Proc1; Proc0/st A is upper bound on slack for Proc1/ld A
– Hence, Proc1/ld A must get its value from Proc0/st A

• How does the hardware track this?
– In MIPS R10000, ld A can be reordered (issued) ahead of st B
– However, ld A is retired after st B. Since st A/ld B are retired in order at

Proc0, we know that Proc1/st B had to occur after ld B (o/wise ld B
would get refetched). Hence st A will have reached Proc1 before ld A
can retire

– Hence, violation is detected and ld A reissues

• For this to work, the write to A must complete before ld B
retires!

Proc0
st A
ld B

Proc1

st B
ld A

WA R

47Mikko Lipasti-University of Wisconsin

Causality Example 3

• More subtle case, again assuming SC
– st B -> st B WAW edge was observed (i.e. Proc1/st B was ordered after

Proc0/st B)
– SC ordering rules imply that all prior stores from Proc0 must now be

visible to Proc1; Proc0/st A is upper bound on slack for ld A
– Hence, Proc1/ld A must get its value from Proc0/st A

• How does the hardware track this?
– In MIPS R10000, ld A can be reordered (issued) ahead of st B
– However, Proc0/st A is retired before Proc0/st B. Since Proc1/st B

occurs after Proc0/st B, and ld A retires after Proc1/st B, we know that
Proc0/st A had to reach Proc1 before ld A can retire

– Hence, violation is detected and ld A reissues

• For this to work, the writes of A and B must be ordered!

Proc0
st A
st B

Proc1

st B
ld A

WAW

48Mikko Lipasti-University of Wisconsin

Proc0
st A
membar
st B

Proc1

st B
WAW

membar
ld A

What About Weaker Models?

• Causality rules are in fact very similar, only the granularity
changes

• In WC, upper bound on slack for a load is not the store
preceding an observed RAW/WAR/WAW edge, but the store (if
any) preceding the membar before the observed
RAW/WAR/WAW edge preceding your latest membar.
– If either membar absent, Proc0/st A is not the upper bound on slack for

ld A
– Would have to search backward in Proc0 to find st A prior to latest

membar preceding st B
– Any edges in same “epoch” (after latest membar) don’t matter until

next “epoch”

49Mikko Lipasti-University of Wisconsin

Proc0
st A
membar
st B

Proc1

st B
WAW

membar
ld A

What About Weaker Models?

• In 370/TSO (relaxed read-to-write), upper bound on slack for a
load depends only on observed RAW edges, since WAR/WAW
edges terminate in stores, and loads are allowed to bypass
stores
– Hence any tracking mechanism would only consider observed RAW

edges

• Need Proc1 membar above to force ld A to see effects of st A

50Mikko Lipasti-University of Wisconsin

Memory Reference Reordering
• Can happen inside the core

– OOO issue of loads

• Can happen outside the core

– Store queue, writethru queue can reorder stores

– Interconnect, routing, message/snoop queues
• Messages arrive or are processed out of order

• Correct implementation must consider both

– Coherence: total order to same address

– Consistency: order across addresses, atomicity

• What we must know: when is each store complete

– No more stale copies of block exist in any cache
51Mikko Lipasti-University of Wisconsin

Coherence Ordering

• Stores to same address must have total order

– Shared bus is easy: arb order or resp order

– Ring is fairly easy (later)

– Interconnection networks are harder (later)

• Loads to same address must follow program
order: load-to-load order

– Track younger speculative loads

– Replay if remote store could change loaded value

52Mikko Lipasti-University of Wisconsin

Consistency Ordering
• Store-store order (if required)

– Retire stores in order

– Prefetch exclusive permission OOO for performance

– In weak models, order across membars only

• Store-load order (if required)

– Retire stores in order

– Read-set tracking for speculative loads

– In weak models, inhibit speculation across membars (or
use membar-aware read-set tracking)

• Write atomicity (if required)

– Don’t source dirty block until store is complete

53Mikko Lipasti-University of Wisconsin

Reordering Inside Core
• Rely on in-order commit of loads and stores

• Read-set tracking for load-load coherence and store-
load ordering

– Track speculative loads using load queue

– Check “older” remote writes against load queue
• Or check for load-hit-younger in insulated load queue

– Replay speculative loads on violation to force new value

• Or, value-based consistency [Cain ISCA 2004]

– Replay loads in order @ commit, compare values

– Seems expensive, but simple filters avoid 97% of checks
• No reorder, no recent miss, no recent snoop

54Mikko Lipasti-University of Wisconsin

Reordering Outside the Core

• Easy case: single shared bus

– Arb or resp order determines write completion

– This order immediately visible to all cores

• Multiple address-interleaved buses

– Coherence (same address) still easy (same bus)

– For consistency (diff addresses) can use implied
order across buses (Q0 before Q1 before Q2 …)

– Otherwise have to collect ACKs (later)

55Mikko Lipasti-University of Wisconsin

Ring Order
• Req and resp traverse ring in order

– Either process snoop, then forward req/resp, or

– Eager forward with trailing resp (2x traffic)

• Races can be resolved given ring order

– Not as simple as bus order

– Can use home node as ordering point; extra
latency since req is not active till after resp
circulates (2x msg bandwidth also)

– Can make reqs immediately active: retries

– Or can reorder based on ring order [Marty ‘06]

• Simpler form of write-string forwarding
56Mikko Lipasti-University of Wisconsin

Network Reordering
• Deterministic routing provides pt-to-pt order

– Always follow same path from A to B: FIFO

– Messages leave A and arrive at B in same order

– Ordering point can shift to A (e.g. directory)

• Indirect network (e.g. tree)

– May have a central ordering point (tree root)

– Ordering can shift to that point

• General case: no guarantees

– E.g. adaptive routing from A to B, or virtual channels

– Or independent address-interleaved queues (Power4)

57Mikko Lipasti-University of Wisconsin

Physical vs. Logical Time
• Physical time systems

– Ordering implies placement in physical time

– Easier to reason about, observe, check, trace, replay

– Less concurrency exposed, worse performance

• Logical time systems

– Ordering is only relative, not in physical time

– Based on causal relationships
• Make sure INV from A->B stays ahead of data from A->B

– Rely on ordering properties of interconnect, e.g. FIFO pt-to-
pt order

– Much harder to reason about, observe, check, trace, replay

– Expose more concurrency, provide better performance
58Mikko Lipasti-University of Wisconsin

Interconnect Not Ordered
• How to detect write completion?

• Must collect ACKs for write misses, upgrades

– ACK from all sharers indicates INV applied

• Broadcast or multicast

• Use directory sharing list (if it exists)

– Proves no stale copies of block in the system

– Can safely retire store (or membar)

• Physical time

59Mikko Lipasti-University of Wisconsin

ACK Collection
• Eager ACK once invalidates are ordered

– Pass through ordering point (root of tree)
• Alphaserver GS320

– Entered in FIFO queue or FIFO network lane or bus or …

– Don’t need to be applied just ordered

– Must prevent subsequent reordering (FIFO)

– Logical time

• Coarse-grained ACKs

– Once per membar (IBM Power4) : physical time

– VCT Coherence [Enright Jerger MICRO 2008]
• ACK per memory region

• Don’t source dirty blocks from region until ACK done

• Logical time
60Mikko Lipasti-University of Wisconsin

Ordering Recap
• Inside core: in-order or read-set tracking

• Outside core: detect write completion

• For coherence, enforce:

– Write order to same address

– Read order to same address

• Per consistency model, enforce:

– Write-write order across addresses

– Write-read order across addresses

– Write atomicity

• What core must know: when write is complete

61Mikko Lipasti-University of Wisconsin

Summary – Consistency Models
• SC simpler for programmers to understand

• Relaxed consistency models originally proposed to enable
high performance with in-order processors (overlap store
latency)
– Most modern ISAs specify WC: Alpha, PowerPC, IA-64

• Many claim that much of the performance benefit of relaxed
consistency can be obtained with aggressive speculation
– It is unclear whether or not this is true
– Power cost of speculation buffering may be too high
– Trend toward simple, power-efficient cores (Intel Atom, GPU shaders)

62Mikko Lipasti-University of Wisconsin

Summary – Consistency Models
• Can meet sufficient conditions by a combination of

– speculation,
– bus ordering or detection of write completion, and
– support for rollback

• Physical vs. logical time systems
– Physical much easier, less concurrent
– Logical time much more difficult, more concurrent

63Mikko Lipasti-University of Wisconsin

Lecture 6 Summary

• UNDERSTANDING CONSISTENCY MODELS
– Atomicity

– Program Ordering

– Visibility

• POPULAR CONSISTENCY MODELS

– Sequential Consistency

– IBM/370

– Processor Consistency

– SPARC TSO/PSO/RMO

– Weak Ordering

– PowerPC Weak Consistency

• VISIBILITY

• MEMORY REFERENCE REORDERING
64Mikko Lipasti-University of Wisconsin

