ECE/CS 757: Advanced Computer Architecture II Interconnects

Instructor: Mikko H Lipasti

Spring 2017 University of Wisconsin-Madison

Lecture notes created by Natalie Enright Jerger

Lecture Outline

- Introduction to Networks
- Network Topologies
- Network Routing
- Network Flow Control
- Router Microarchitecture

What is an Interconnection Network?

Computer Architecture

What is an Interconnection Network?

- Application: Ideally wants low-latency, high-bandwidth, dedicated channels between logic and memory
- Technology: Dedicated channels too expensive in terms of area and power

What is an Interconnection Network?

Computer Architecture

- An Interconnection Network is a programmable system that transports data between terminals
- **Technology**: Interconnection network helps efficiently utilize scarce resources
- Application: Managing communication can be critical to performance

Interconnection Networks Introduction

- Interconnection networks should be designed
 - to transfer the maximum amount of information
 - within the <u>least amount of time</u> (and cost, power constraints)
 - so as not to bottleneck the system

Types of Interconnection Networks

- Interconnection networks can be grouped into four domains
 - Depending on number and proximity of devices to be connected
- On-Chip Networks (OCNs or NoCs)
 - Devices include microarchitectural elements (functional units, register files), caches, directories, processors
 - Current/Future systems: dozens, hundreds of devices
 - Ex: Intel TeraFLOPS research prototypes 80 cores
 - Intel Single-chip Cloud Computer 48 cores
 - Proximity: millimeters

Types of Interconnection Networks (2)

- System/Storage Area Networks (SANs)
 - Multiprocessor and multicomputer systems
 - Interprocessor and processor-memory interconnections
 - Server and data center environments
 - Storage and I/O components
 - Hundreds to thousands of devices interconnected
 - IBM Blue Gene/L supercomputer (64K nodes, each with 2 processors)
 - Maximum interconnect distance: tens of meters (typical) to a few hundred meters
 - Examples (standards and proprietary)
 - InfiniBand, Myrinet, Quadrics, Advanced Switching Interconnect

Types of Interconnection Networks (3)

- Local Area Networks (LANs)
 - Interconnect autonomous computer systems
 - Machine room or throughout a building or campus
 - Hundreds of devices interconnected (1,000s with bridging)
 - Maximum interconnect distance
 - few kilometers to few tens of kilometers
 - Example (most popular): Ethernet, with 10 Gbps over 40Km
- Wide Area Networks (WANs)
 - Interconnect systems distributed across globe
 - Internetworking support required
 - Many millions of devices interconnected
 - Max distance: many thousands of kilometers
 - Example: ATM (asynchronous transfer mode)

Interconnection Network Domains

ECE 1749H: Interconnection

Networks (Enright Jerger) Shde courtesy Timothy Mark Pinkston and José Duato

Interconnection Network Domains

ECE 1749H: Interconnection

Networks (Enright Jerger) Shde courtesy Timothy Mark Pinkston and José Duato

Why Study Networks on Chip?

Networks (Enright Jerger)

Why Study On-Chip Networks?

Example of Multi- and Many-Core Architectures

ECE 1749H: Interconnection Networks (Enright Jerger)

Why study interconnects?

- They provide external connectivity from system to outside world
 - Also, connectivity within a single computer system at many levels
 - I/O units, boards, chips, modules and blocks inside chips
- *Trends:* high demand on communication bandwidth
 - increased computing power and storage capacity
 - switched networks are replacing buses
- Computer architects/engineers <u>must understand</u> <u>interconnect problems and solutions</u> in order to more effectively design and evaluate systems

On-Chip Networks (OCN or NoCs)

- Why On-Chip Network?
 - Ad-hoc wiring does not scale beyond a small number of cores
 - Prohibitive area
 - Long latency
- OCN offers
 - scalability
 - efficient multiplexing of communication
 - often modular in nature (ease verification)

Differences between on-chip and offchip networks

- Significant research in multi-chassis interconnection networks (off-chip)
 - Supercomputers
 - Clusters of workstations
 - Internet routers
- Leverage research and insight but...
 - Constraints are different
 - New opportunities

Off-chip vs. on-chip

- Off-chip: I/O bottlenecks
 - Pin-limited bandwidth
 - Inherent overheads of off-chip I/O transmission
- On-chip
 - Wiring constraints
 - Metal layer limitations
 - Horizontal and vertical layout
 - Short, fixed length
 - Repeater insertion limits routing of wires
 - Avoid routing over dense logic
 - Impact wiring density

ECE 1749H: Interconnection Networks (Enright Jerger)

Off-Chip vs On-Chip

- On-Chip
 - Power
 - Consume 10-15% or more of die power budget
 - Latency
 - Different order of magnitude
 - Routers consume significant fraction of latency

New opportunities

- Abundant wiring
 - Change in relative cost of wires and buffers
 - Many short flits
- Tightly integrated into system
 - Not commodity fully customized design
 - Allows for optimization with uncore
 - Cache coherence
- Emerging technology
 - Optics

On-Chip Network Evolution

Ad hoc wiring

Small number of nodes

- Buses and Crossbars
 - Simplest variant of on-chip networks
 - Low core counts
 - Like traditional multiprocessors
 - Bus traffic quickly saturates with a modest number of cores
 - Crossbars: higher bandwidth
 - Poor area and power scaling

Multicore Examples (1)

Sun Niagara

- Niagara 2: 8x9 crossbar (area ~= core)
- Rock: Hierarchical crossbar (5x5 crossbar connecting clusters of 4 cores)

Spring 2014

ECE 1749H: Interconnection Networks (Enright

Multicore Examples (2)

IBM Cell

- IBM Cell
- Element Interconnect Bus
 - 12 elements
 - 4 unidirectional rings
 - 16 Bytes wide
 - Operates at 1.6 GHz

Many Core Example

- Intel TeraFLOPS
 - 80 core prototype
 - 5 GHz
 - Each tile:
 - Processing engine + on-chip network router

Many-Core Example (2): Intel SCC

 Intel's Single-chip Cloud Computer (SCC) uses a 2D mesh with state of the art routers

• Cost: area and power

ECE 1749H: Interconnection Networks (Enright Jerger)

Lecture Outline

- Introduction to Networks
- Network Topologies
- Network Routing
- Network Flow Control
- Router Microarchitecture

Readings

- Read: [18] N. Enright Jerger, L.-S. Pei, "On-Chip Networks," Synthesis Lectures on Computer Architecture, <u>http://www.morganclaypool.com/doi/abs/10.2200/S</u> 00209ED1V01Y200907CAC008
- Review: [19] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal. On-Chip Interconnection Architecture of the Tile Processor. IEEE Micro, vol. 27, no. 5, pp. 15-31, 2007