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Topology Overview

• Definition: determines arrangement of channels and 
nodes in network
– Analogous to road map

• Often first step in network design

• Significant impact on network cost-performance
– Determines number of hops

• Latency
• Network energy consumption

– Implementation complexity
• Node degree
• Ease of layout
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ABSTRACT METRICS
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Abstract Metrics

• Use metrics to evaluate performance and cost 
of topology

• Also influenced by routing/flow control

– At this stage

• Assume ideal routing (perfect load balancing)

• Assume ideal flow control (no idle cycles on any 
channel)
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Abstract Metrics: Degree

• Switch Degree: number of links at a node

– Proxy for estimating cost

• Higher degree requires more links and port counts at 
each router
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Abstract Metrics: Hop Count

• Path: ordered set of channels between source 
and destination

• Hop Count: number of hops a message takes 
from source to destination
– Simple, useful proxy for network latency

• Every node, link incurs some propagation delay even when 
no contention

• Minimal hop count: smallest hop count 
connecting two nodes
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Hop Count

• Network diameter: large min hop count in 
network

• Average minimum hop count: average across 
all src/dst pairs

– Implementation may incorporate non-minimal 
paths

• Increases average hop count
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Hop Count

• Uniform random traffic

– Ring > Mesh > Torus

• Derivations later
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Latency

• Time for packet to traverse network
– Start: head arrives at input port
– End: tail departs output port

• Latency = Head latency + serialization latency
– Serialization latency: time for packet with Length L to 

cross channel with bandwidth b (L/b)

• Approximate with hop count
– Other design choices (routing, flow control) impact 

latency
• Unknown at this stage
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Abstract Metrics: Maximum Channel Load

• Estimate max bandwidth the network can 
support

– Max bits per second (bps) that can be injected by 
every node before it saturates

• Saturation: network cannot accept any more traffic

– Determine most congested link

• For given traffic pattern

• Will limit overall network bandwidth

• Estimate load on this channel
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Maximum Channel Load

• Preliminary

– Don’t know specifics of link yet

– Define relative to injection load

• Channel load of 2

– Channel is loaded with twice injection bandwidth

– If each node injects a flit every cycle

• 2 flits will want to traverse bottleneck channel every cycle

• If bottleneck channel can only handle 1 flit per cycle
– Max network bandwidth is ½ link bandwidth

– A flit can be injected every other cycle
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Maximum Channel Load Example

• Uniform random
– Every node has equal probability of sending to every node

• Identify bottleneck channel

• Half of traffic from every node will cross bottleneck 
channel
– 8 x ½ = 4

• Network saturates at ¼ injection bandwidth

A

C D

B E

G H

F

ECE 1749H: Interconnection Networks (Enright Jerger)Fall 2014 12



Bisection Bandwidth
• Common off-chip metric

– Proxy for cost
– Amount of global wiring that will be necessary
– Less useful for on-chip

• Global on-chip wiring considered abundant

• Cuts: partition all the nodes into two disjoint sets 
– Bandwidth of a cut 

• Bisection 
– A cut which divides all nodes into (nearly) half
– Channel bisection min. channel count over all bisections 
– Bisection bandwidth min. bandwidth over all bisections 

• With uniform traffic
– ½ of traffic crosses bisection

ECE 1749H: Interconnection Networks (Enright Jerger)Fall 2014 13



Throughput Example

• Bisection = 4 (2 in each direction)

0 1 2 3 4 5 6 7

• With uniform random traffic
– 3 sends 1/8 of its traffic to 4,5,6
– 3 sends 1/16 of its traffic to 7 (2 possible shortest paths)
– 2 sends 1/8 of its traffic to 4,5 
– Etc

• Channel load = 1
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A

B

Path Diversity

• Multiple shortest paths between source/destination pair (R)

• Fault tolerance

• Better load balancing in network

• Routing algorithm should be able to exploit path diversity
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NETWORK EVALUATION
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Evaluating Networks

• Analytical and theoretical analysis
– E.g. mathematical derivations of max channel load
– Analytical models for power (DSENT)

• Simulation-based analysis
– Network-only simulation with synthetic traffic patterns
– Full system simulation with real application benchmarks

• Hardware implementation
– HDL implementation to measure power, area, frequency 

etc. 

• Measurement on real hardware
– Profiling and analyzing communication
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Evaluating Topologies

• Important to consider traffic pattern 

• Talked about system architecture impact on 
traffic

• If actual traffic pattern unknown
– Synthetic traffic patterns

• Evaluate common scenarios

• Stress test network

• Derive various properties of network
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Traffic Patterns

• Historically derived from particular 
applications of interest

– Spatial distribution

– Matrix Transpose  Transpose traffic pattern

• di = si+b/2 mod b

• b-bit address, di: ith bit of destination
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Traffic Patterns Examples

• Fast Fourier Transform (FFT) or sorting 
application  shuffle permutation

• Fluid dynamics  neighbor patterns

Shuffle: di = si-1 mod b Neighbor: dx = sx+ 1 mod k
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Traffic Patterns (3)

• Uniform random
– Each source equally likely to communication with each 

destination
– Most commonly used traffic pattern

• Very benign
• Traffic is uniformly distributed

– Balances load even if topology/routing algorithm has very poor 
load balancing

– Need to be careful

– But can be good for debugging/verifying 
implementation
• Well-understood pattern
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Stress-testing Network

• Uniform random can make bad topologies 
look good

• Permutation traffic will stress-test the network
– Many types of permutation (ex: shuffle, 

transpose, neighbor)

– Each source sends all traffic to single destination

– Concentration of load on individual pairs
• Stresses load balancing
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Traffic Patterns

• For topology/routing discussion

– Focus on spatial distribution

• Traffic patterns also have temporal aspects

– Bursty behavior

– Important to capture temporal behavior as well

• Motivate need for new traffic patterns
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Full System Simulation
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Trace Simulation
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Traffic Patterns
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COMMON TOPOLOGIES
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Types of Topologies

• Focus on switched topologies
– Alternatives: bus and crossbar

– Bus
• Connects a set of components to a single shared channel
• Effective broadcast medium

– Crossbar
• Directly connects n inputs to m outputs without 

intermediate stages
• Fully connected, single hop network
• Component of routers
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Types of Topologies

• Direct
– Each router is associated with a terminal node

– All routers are sources and destinations of traffic

• Indirect
– Routers are distinct from terminal nodes

– Terminal nodes can source/sink traffic

– Intermediate nodes switch traffic between terminal nodes

• To date: Most on-chip networks use direct topologies
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Torus (1)

• K-ary n-cube:  kn network nodes

• N-Dimensional grid with k nodes in each 
dimension

3-ary 2-cube3-ary 2-mesh 2,3,4-ary 3-mesh
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Torus (2)

• Map well to planar substrate for on-chip

• Topologies in Torus Family
– Ex: Ring -- k-ary 1-cube

• Edge Symmetric
– Good for load balancing
– Removing wrap-around links for mesh loses edge symmetry

• More traffic concentrated on center channels

• Good path diversity

• Exploit locality for near-neighbor traffic
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Hop Count

• Average shortest distance over all pairs of 
nodes

• Torus:

– For uniform random traffic
• Packet travels k/4 hops in each of n dimensions

• Mesh:
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Torus (4)

• Degree = 2n, 2 channels per dimension

– All nodes have same degree

• Total channels = 2nN
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Channel Load for Torus 

• Even number of k-ary (n-1)-cubes in outer dimension

• Dividing these k-ary (n-1)-cubes gives a 2 sets of kn-1 

bidirectional channels or 4kn-1

• ½ Traffic from each node cross bisection
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N

2
´
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8

• Mesh has ½ the bisection bandwidth of torus
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Deriving Channel Load: 4-ary 2-cube

• Divide network in half
• Number of bisection channels

– 8 links, bidirectional = 16 
channels

• ½ traffic crosses bisection

• N/2 traffic distributed over 16 
links

• Channel load = ½
– Loaded at twice injection 

bandwidth
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Torus Path Diversity

2 edge and node disjoint minimum paths

2 dimensions*

*assume single direction for x and y

NW, NE, SW, SE combos
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Mesh

• A torus with end-around connection removed

• Same node degree

• Bisection channels halved

– Max channel load = k/4

• Higher demand for central channels

– Load imbalance
ECE 1749H: Interconnection Networks (Enright Jerger)Fall 2014 37



Butterfly

• Indirect network

• K-ary n-fly: kn

network nodes

• Routing from 000 to 
010
– Dest address used to 

directly route packet

– Bit n used to select 
output port at stage n
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Butterfly (2)

• No path diversity

– Can add extra stages for diversity

• Increase network diameter
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Butterfly (3)
• Hop Count

– LogkN + 1

– Does not exploit locality

• Hop count same regardless of location 

• Switch Degree = 2k

• Requires long wires to implement
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Butterfly: Channel Load

• Hmin x N: Channel demand
– Number of channel traversals required to deliver one 

round of packets

• Channel Load  uniform traffic
– Equally loads channels

– Increases for adversarial traffic
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Butterfly: Deriving Channel Load

• Divide network in half
• Number of bisection channels: 

4

• 4 nodes (top half) send ½ 
traffic to lower half

• Distributed across 2 channels 
(C)

• Channel load = 1
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Butterfly: Channel Load

• Adversarial traffic
– All traffic from top 

half sent to bottom 
half 

– E.g. 0 sends to 4, 1 
sends to 5

• Channel load: 2
– Loaded at ½ injection 

bandwidth
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Clos Network

• 3-stage indirect network
– Larger number of stages: built recursively by replacing 

middle stage with 3-stage Clos

• Characterized by triple (m, n, r)
– M: # of middle stage switches
– N: # of input/output ports on input/output switches
– R: # of input/output switches

• Hop Count = 4
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Clos Network 
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Clos Network

• Strictly non-blocking when m > 2n-1
– Any input can connect to any unique output port

• r x n nodes

• Degree
– First and last stages: n + m, middle stage: 2r

• Path diversity: m

• Can be folded along middle switches
– Input and output switches are shared
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Folded Clos (Fat Tree)

• Bandwidth remains constant at each level

• Regular Tree: Bandwidth decreases closer to root

ECE 1749H: Interconnection Networks (Enright Jerger)Fall 2014 47



Fat Tree (2)

• Provides path diversity
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Application of Topologies to On-Chip Networks

• FBFly
– Convert butterfly to direct network

• Swizzle switch
– Circuit-optimized crossbar

• Rings
– Simple, low hardware cost

• Mesh networks
– Several products/prototypes

• MECS and bus-based networks
– Broadcast and multicast capabilities
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Implementation

• Folding

– Equalize path lengths

• Reduces max link 
length

• Increases length of 
other links
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Concentration

• Don’t need 1:1 ratio of 
routers to cores
– Ex: 4 cores concentrated to 1 

router

• Can save area and power

• Increases network 
complexity
– Concentrator must 

implement policy for sharing 
injection bandwidth

– During bursty communication
• Can bottleneck

ECE 1749H: Interconnection Networks (Enright Jerger)Fall 2014 51



Implication of Abstract Metrics on Implementation

• Degree: useful proxy for router complexity
– Increasing ports requires additional buffer queues, 

requestors to allocators, ports to crossbar

– All contribute to critical path delay, area and 
power

– Link complexity does not correlate with degree
• Link complexity depends on link width

• Fixed number of wires, link complexity for 2-port vs 3-
port is same
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Implications (2)

• Hop Count: useful proxy for overall latency 
and power

– Does not always correlate with latency
• Depends heavily on router pipeline and link 

propagation

– Example:
• Network A with 2 hops, 5 stage pipeline, 4 cycle link 

traversal vs.

• Network B with 3 hops, 1 stage pipeline, 1 cycle link 
traversal 
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Implications (2)

• Hop Count: useful proxy for overall latency 
and power

– Does not always correlate with latency
• Depends heavily on router pipeline and link 

propagation

– Example:
• Network A with 2 hops, 5 stage pipeline, 4 cycle link 

traversal vs.

• Network B with 3 hops, 1 stage pipeline, 1 cycle link 
traversal 

Hop Count says A is better than B
But A has 18 cycle latency vs 6 cycle 

latency for B
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Implications (3)

• Topologies typically trade-off hop count and 
node degree

• Max channel load useful proxy for network 
saturation and max power
– Higher max channel load  greater network 

congestion

– Traffic pattern impacts max channel load
• Representative traffic patterns important

– Max power: dynamic power is highest with peak 
switching activity and utilization in network
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Topology Summary

• First network design decision

• Critical impact on network latency and 
throughput
– Hop count provides first order approximation of 

message latency

– Bottleneck channels determine saturation 
throughput
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