Interconnection Networks:

Routing

Prof. Natalie Enright Jerger

Routing Overview

- Discussion of topologies assumed ideal routing
- In practice...
 - Routing algorithms are not ideal
- Goal: distribute traffic evenly among paths

 Avoid hot spots, contention
 More balanced → closer throughput is to ideal
- Keep complexity in mind

Routing Basics

- Once topology is fixed
- Routing algorithm determines path(s) from source to destination

Routing Example

- Some routing options:
 - Greedy: shortest path
 - Uniform random: randomly pick direction
 - Adaptive: send packet in direction with lowest local channel load
- Which gives best worst-case throughput?

Routing Example (2)

- node *i* sends to *i+3 mod 8*

Routing Example (3)

- Greedy:
 - All traffic moves counterclockwise
 - Loads counterclockwise with 3 units of traffic
 - Each node gets 1/3 throughput
 - Clockwise channels are idle
- Random:
 - Clockwise channels become bottleneck
 - Load of 5/2
 - Half of traffic traverses 5 links in clockwise direction
 - Gives throughput of 2/5

Routing Example (4)

- Adaptive:
 - Perfect load balancing (some assumptions about implementation)
 - Sends 5/8 of traffic over 3 links, sends 3/8 over 5 links
 - Channel load is 15/8, throughput of 8/15
- Note: worst case throughput just 1 metric designer might optimize

Routing Algorithm Attributes

- Types
 - Deterministic, Oblivious, Adaptive
- Number of destinations
 - Unicast, Multicast, Broadcast?
- Adaptivity
 - Oblivious or Adaptive? Local or Global knowledge?
 - Minimal or non-minimal?
- Implementation
 - Source or node routing?
 - Table or circuit?

Routing Deadlock

- Each packet is occupying a link and waiting for a link
- Without routing restrictions, a resource cycle can occur
 - Leads to deadlock

ECE 1749H: Interconnection Networks (Enright Jerger)

Deterministic

- All messages from Source to Destination traverse the same path
- Common example: Dimension Order Routing (DOR)
 - Message traverses network dimension by dimension
 - Aka XY routing
- Cons:
 - Eliminates any path diversity provided by topology
 - Poor load balancing
- Pros:
 - Simple and inexpensive to implement
 - Deadlock-free

Dimension Order Routing: Cube networks

- a.k.a X-Y Routing
 - Traverse network dimension by dimension
 - Can only turn to Y dimension after finished X

Destination-Tag Routing: Butterfly Networks

- Destination address
 - Interpreted as an ndigit radix-k number
 - Directly routes packet
- Each digit selects the output port at each step

Oblivious

- Routing decisions are made without regard to network state
 - Keeps algorithms simple
 - Unable to adapt

Deterministic algorithms are a subset of oblivious

Valiant's Routing Algorithm

- To route from s to d
 - Randomly choose intermediate node d'
 - Route from s to d' and from d' to d.
- Randomizes any traffic pattern
 - All patterns appear uniform random
 - Balances network load
- Non-minimal
- Destroys locality

Minimal Oblivious

- Valiant's: Load balancing but significant increase in hop count
- Minimal Oblivious: some load balancing, but use shortest paths
 - d' must lie within min quadrant
 - 6 options for d'
 - Only 3 different paths

Minimal Oblivious Routing on Fat Tree

- Node labels (addr template)
 - All nodes reachable from left terminals
- Route from s to d
 - Randomly selected, nearest common ancestor x of s and d
- Route s to x then x to d
- Example s = 1, d = 6
- Construct route incrementally
 - Randomly select output port
 - Until addr template matches d

Oblivious Routing

- Valiant's and Minimal Oblivious
 - Deadlock free
 - When used in conjunction with X-Y routing

Randomly choose between X-Y and Y-X routes
 — Oblivious but not deadlock free!

Adaptive

- Exploits path diversity
- Uses network state to make routing decisions
 - Buffer occupancies often used
 - Coupled with flow control mechanism
- Local information readily available
 - Global information more costly to obtain
 - Network state can change rapidly
 - Use of local information can lead to non-optimal choices
- Can be minimal or non-minimal

Minimal Adaptive Routing

• Local info can result in sub-optimal choices

Non-minimal adaptive

- Fully adaptive
- Not restricted to take shortest path
- Misrouting: directing packet along non-productive channel
 - Priority given to productive output
 - Some algorithms forbid U-turns
- Livelock potential: traversing network without ever reaching destination
 - Mechanism to guarantee forward progress
 - Limit number of misroutings

Non-minimal routing example

 Longer path with potentially lower latency Livelock: continue routing in cycle

Adaptive Routing Example

- Should 3 route clockwise or counterclockwise to 7?
 5 is using all the capacity of link 5 → 6
- Queue at node 5 will sense contention but not at node 3
- Backpressure: allows nodes to indirectly sense congestion
 - Queue in one node fills up, it will stop receiving flits
 - Previous queue will fill up
- If each queue holds 4 packets
 - 3 will send 8 packets before sensing congestion

Congestion Information

- Local
 - Information about my neighbors only
 - Implicitly available I know how many downstream buffers are available (from flow control)
- Global
 - Information about all nodes
 - Explicitly send status information
 - Usually based on VC utilization or buffer occupancy
- Timeliness

Sending Congestion Information

- Piggybacking
 - Send congestion information along with packets
- Extra side network
 - More affordable in on-chip networks
 - Broadcast
 - Packetize
- Aggregate or individual node

Partially Adaptive Routing: Turn Model

- DOR eliminates 4 turns
 - N to E, N to W, S to E, S to W
 - No adaptivity
- Some adaptivity by removing 2 of 8 turns
 - Remains deadlock free (like DOR)
- West first
 - Eliminates S to W and N to W

Turn Model Routing

- Negative first
 - Eliminates E to S and N to W
- North last
 - Eliminates N to E and N to W
- Odd-Even
 - Eliminates 2 turns depending on if current node is in odd of even column
 - Even column: E to N and N to W
 - Odd column: E to S and S to W
 - Deadlock free (disallow 180 turns)
 - Better adaptivity

Negative-First Routing Example

 Limited or no adaptivity for certain sourcedestination pairs

- What about eliminating turns NW and WN?
- Not a valid turn elimination
 - Resource cycle results

Adaptive Routing and Deadlock

- Option 1: Eliminate turns that lead to deadlock
 - Limits flexibility
- Option 2: Allow all turns
 - Give more flexibility
 - Must use other mechanism to prevent deadlock
 - Rely on flow control (later)
 - Escape virtual channels

Adaptive Routing: Other Topologies

- Butterfly: no path diversity
 - Can add extra stages for path diversity, adaptive routing
- Fat tree (folded Clos)
 - Similar to minimal oblivious
 - But instead of randomly selecting path to least common ancestor
 - Select adaptively (upstream)
 - Message routed deterministically (downstream)

Routing Implementation

- Source tables
 - Entire route specified at source
 - Avoids per-hop routing latency
 - Unable to adapt dynamically to network conditions
 - Can specify multiple routes per destination
 - Give fault tolerance and load balance
 - Support reconfiguration (not specific to topology)

Source Table Routing

Destination	Route 1	Route 2
00	Х	Х
10	EX	EX
20	EEX	EEX
01	NX	NX
11	NEX	ENX
21	NEEX	ENEX
02	NNX	NNX
12	ENNX	NNEX
22	EENNX	NNEEX
03	NNNX	NNNX
13	NENNX	ENNNX
23	EENNNX	NNNEEX

• Arbitrary length paths: storage overhead and packet overhead

Node Tables

- Store only next direction at each node
- Smaller tables than source routing
- Adds per-hop routing latency
- Can adapt to network conditions
 - Specify multiple possible outputs per destination
 - Select randomly to improve load balancing

Node Table Routing

То									
From	00	01	02	10	11	12	20	21	22
00	X -	N -	N -	E -	E N	E N	E -	E N	E N
01	S -	X -	N -	E S	E -	E N	E S	E -	E N
02	S -	S -	X -	E S	E S	E -	E S	E S	E -
10	W -	W -	W -	X -	N -	N -	E -	E N	E N
11	W -	W -	W -	S -	X -	N -	E S	E -	E N
12	W -	W -	W -	S -	S -	X -	E S	E S	E -
20	W -	W -	W -	W -	W -	W -	X -	N -	N -
21	W -	W -	W -	W -	W -	W -	S -	X -	N -
22	W -	W -	W -	W -	W -	W -	S -	S -	X -

- Implements West-First Routing
- Each node would have 1 row of table
 - Max two possible output ports

Implementation

- Combinational circuits can be used
 - Simple (e.g. DOR): low router overhead
 - Specific to one topology and one routing algorithm
 - Limits fault tolerance

• Tables can be updated to reflect new configuration, network faults, etc

Circuit Based

- Next hop based on buffer occupancies
- Or could implement simple DOR
- Fixed w.r.t. topology

Routing Algorithms: Implementation

Routing Algorithm	Source Routing	Combinational	Node Table
Deterministic			
DOR	Yes	Yes	Yes
Oblivious			
Valiant's	Yes	Yes	Yes
Minimal	Yes	Yes	Yes
Adaptive	No	Yes	Yes

Routing Summary

- Latency paramount concern
 - Minimal routing most common for NoC
 - Non-minimal can avoid congestion and deliver low latency
- To date: NoC research favors DOR for simplicity and deadlock freedom
 - On-chip networks often lightly loaded
- Only covered unicast routing
 - Recent work on extending on-chip routing to support multicast