Interconnection Networks:

Flow Control

Prof. Natalie Enright Jerger

Switching/Flow Control Overview

- Topology: determines **connectivity** of network
- Routing: determines **paths** through network
- Flow Control: determine allocation of resources to messages as they traverse network
 - Buffers and links
 - Significant impact on throughput and latency of network

Flow Control

- Control state records
 - allocation of channels and buffers to packets
 - current state of packet traversing node
- Channel bandwidth advances flits from this node to next
- Buffers hold flits waiting for channel bandwidth

Packets

- Messages: composed of one or more packets
 - If message size is <= maximum packet size only one packet created
- Packets: composed of one or more flits
- Flit: flow control digit
- Phit: physical digit

 Subdivides flit into chunks = to link width

- Off-chip: channel width limited by pins
 - Requires phits
- On-chip: abundant wiring means phit size == flit size

Packets(3)

Packet contains destination/route information
 – Flits may not → all flits of a packet must take same route

Switching

Different flow control techniques based on granularity

Message-based: allocation made at message granularity (circuit-switching)

– Packet-based: allocation made to whole packets

- Flit-based: allocation made on a flit-by-flit basis

Message-Based Flow Control

• Coarsest granularity

- Circuit-switching
 - Pre-allocates resources across multiple hops
 - Source to destination
 - Resources = links
 - Buffers are not necessary

Probe sent into network to reserve resources

Circuit Switching

- Once probe sets up circuit
 - Message does not need to perform any routing or allocation at each network hop
 - Good for transferring large amounts of data
 - Can amortize circuit setup cost by sending data with very low perhop overheads
- No other message can use those resources until transfer is complete
 - Throughput can suffer due setup and hold time for circuits
 - Links are idle until setup is complete

Circuit Switching Example

- Significant latency overhead prior to data transfer
 - Data transfer does not pay per-hop overhead for routing and allocation

ECE 1749H: Interconnection Networks (Enright Jerger)

Circuit Switching Example (2)

- When there is contention
 - Significant wait time
 - Message from 1 \rightarrow 2 must wait

ECE 1749H: Interconnection Networks (Enright Jerger)

Time-Space Diagram: Circuit-Switching

Packet-based Flow Control

- Break messages into packets
- Interleave packets on links
 - Better utilization
- Requires per-node buffering to store in-flight packets
- Two types of packet-based techniques

Store and Forward

- Links and buffers are allocated to entire packet
- Head flit waits at router until entire packet is received before being forwarded to the next hop
- Not suitable for on-chip
 - Requires buffering at each router to hold entire packet
 - Packet cannot traverse link until buffering allocated to entire packet
 - Incurs high latencies (pays serialization latency at each hop)

Store and Forward Example

- High per-hop latency
 - Serialization delay paid at each hop
- Larger buffering required

Time-Space Diagram: Store and Forward

Packet-based: Virtual Cut Through

- Links and Buffers allocated to entire packets
- Flits can proceed to next hop before tail flit has been received by current router
 - But only if next router has enough buffer space for entire packet
- Reduces the latency significantly compared to SAF
- But still requires large buffers
 Unsuitable for on-chip

- Lower per-hop latency
- Large buffering required

Time-Space Diagram: VCT

ECE 1749H: Interconnection Networks (Enright Jerger)

Virtual Cut Through

• Throughput suffers from inefficient buffer allocation

Time-Space Diagram: VCT (2)

ECE 1749H: Interconnection Networks (Enright Jerger)

Flit-Level Flow Control

 Help routers meet tight area/power constraints

- Flit can proceed to next router when there is buffer space available for that flit
 - Improves over SAF and VCT by allocating buffers on a flit-by-flit basis

Wormhole Flow Control

- Pros
 - More efficient buffer utilization (good for on-chip)
 - Low latency
- Cons
 - Poor link utilization: if head flit becomes blocked, all links spanning length of packet are idle
 - Cannot be re-allocated to different packet
 - Suffers from head of line (HOL) blocking

Wormhole Example

• 6 flit buffers/input port

Time-Space Diagram: Wormhole

Virtual Channels

First proposed for deadlock avoidance
 We'll come back to this

Can be applied to any flow control
 – First proposed with wormhole

Virtual Channel Flow Control

- Virtual channels used to combat HOL blocking in wormhole
- Virtual channels: multiple flit queues per input port
 - Share **same** physical link (channel)
- Link utilization improved

 Flits on different VC can pass blocked packet

Virtual Channel Flow Control (2)

Virtual Channel Flow Control (3)

Virtual Channel Flow Control (3)

- Packets compete for VC on flit by flit basis
- In example: on downstream links, flits of each packet are available every other cycle
- Upstream links throttle because of limited buffers
- Does not mean links are idle
 May be used by packet allocated to other VCs

Virtual Channel Example

- 6 flit buffers/input port
- 3 flit buffers/VC

Summary of techniques

	Links	Buffers	Comments
Circuit- Switching	Messages	N/A (buffer-less)	Setup & Ack
Store and Forward	Packet	Packet	Head flit waits for tail
Virtual Cut Through	Packet	Packet	Head can proceed
Wormhole	Packet	Flit	HOL
Virtual Channel	Flit	Flit	Interleave flits of different packets

Deadlock

- Using flow control to guarantee deadlock freedom give more flexible routing
 - Recall: routing restrictions needed for deadlock freedom
- If routing algorithm is not deadlock free
 VCs can break resource cycle
- Each VC is time-multiplexed onto physical link
 - Holding VC implies holding associated buffer queue
 - Not tying up physical link resource
- Enforce order on VCs

Deadlock: Enforce Order

- All message sent through VC 0 until cross dateline
- After dateline, assigned to VC 1
 - Cannot be allocated to VC 0 again

Deadlock: Escape VCs

- Enforcing order lowers VC utilization
 Previous example: VC 1 underutilized
- Escape Virtual Channels
 - Provide an escape path for every packet in a potential cycle
 - Have 1 VC that uses a deadlock free routing subfunction
 - Example: VC 0 uses DOR, other VCs use arbitrary routing function
 - Access to VCs arbitrated fairly: packet always has chance of landing on escape VC
 - Once in escape VC, must remain there (routing restrictions)
- Assign different message classes to different VCs to prevent protocol level deadlock
 - Prevent req-ack message cycles

Virtual Channel Reallocation

- When can a VC be reallocated to a new packet?
- Two options: conservative and aggressive
 - Conservative (atomic): only reallocate empty VC
 - Aggressive (non-atomic): reallocate once tail flit has been received
- Implications for deadlock

VCT + non-atomic allocation

- Typically uses non-atomic VC allocation
- VC allocated only if there is enough free buffer space to hold entire packet
 - Guarantees that whole packet can be received by VC
 - Will entirely vacate upstream VC
 - New packet at head of VC can bid for resources

VC Reallocation: Wormhole + Aggressive

- Turn-model and deterministic routing
 - No cyclic channel dependence
 - Can use aggressive reallocation

P1 can be forwarded immediately

• High VC utilization but low adaptivity

VC Reallocation: Wormhole + Adaptive Routing

- Adaptive routing

 Cyclic channel dependence
- With aggressive reallocation
 - Packet spans 2 VCs and head flit not at head of one VC
 - Cannot reach escape VC
 - Leads to deadlock
- Requires conservative reallocation
 - Can only reallocate an empty VC
 - Low VC utilization

Buffer Backpressure

- Need mechanism to prevent buffer overflow
 - Avoid dropping packets
 - Upstream nodes need to know buffer availability at downstream routers
- Significant impact on throughput achieved by flow control
- Two common mechanisms
 - Credits
 - On-off

Credit-Based Flow Control

- Upstream router stores credit counts for each downstream VC
- Upstream router
 - When flit forwarded
 - Decrement credit count
 - Count == 0, buffer full, stop sending
- Downstream router
 - When flit forwarded and buffer freed
 - Send credit to upstream router
 - Upstream increments credit count

Credit Timeline

- Round-trip credit delay:
 - Time between when buffer empties and when next flit can be processed from that buffer entry
 - If only single entry buffer, would result in significant throughput degradation
 - Important to size buffers to tolerate credit turn-around

On-Off Flow Control

- Credit: requires upstream signaling for every flit
- On-off: decreases upstream signaling
- Off signal
 - Sent when number of free buffers falls below threshold F_{off}
- On signal
 - Sent when number of free buffers rises above threshold F_{on}

Fall 2014- On-chip buffers more expensive than wires

Buffer Sizing

- Prevent backpressure from limiting throughput
 Buffers must hold flits >= turnaround time
- Assume:
 - 1 cycle propagation delay for data and credits
 - 1 cycle credit processing delay
 - 3 cycle router pipeline
- At least 6 flit buffers

Actual Buffer Usage & Turnaround Delay

Flow Control Summary

- On-chip networks require techniques with lower buffering requirements
 - Wormhole or Virtual Channel flow control
- Avoid dropping packets in on-chip environment
 Requires buffer backpressure mechanism
- Complexity of flow control impacts router microarchitecture (next)