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SIMD & MPP Readings 

Read: [20] C. Hughes, “Single-Instruction Multiple-Data 
Execution,” Synthesis Lectures on Computer Architecture, 
http://www.morganclaypool.com/doi/abs/10.2200/S00647ED1V
01Y201505CAC032 

 

Review: [21] Steven L. Scott, Synchronization and Communication 
in the T3E Multiprocessor, Proceedings of International 
Conference on Architectural Support for Programming Languages 
and Operating Systems, pages 26-36, October 1996. 

http://www.morganclaypool.com/doi/abs/10.2200/S00647ED1V01Y201505CAC032
http://www.morganclaypool.com/doi/abs/10.2200/S00647ED1V01Y201505CAC032
http://www.morganclaypool.com/doi/abs/10.2200/S00647ED1V01Y201505CAC032
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Lecture Outline 

• SIMD introduction 

• Automatic Parallelization for SIMD machines 

• Vector Architectures 

– Cray-1 case study 



SIMD vs. Alternatives 

Mikko Lipasti-University of Wisconsin 4 

From [Hughes, SIMD Synthesis Lecture] 



SIMD vs. Superscalar 

Mikko Lipasti-University of Wisconsin 5 

From [Hughes, SIMD Synthesis Lecture] 



Multithreaded vs. Multicore 

Mikko Lipasti-University of Wisconsin 6 

From [Hughes, 
SIMD Synthesis 
Lecture] 



SIMD Efficiency 

Mikko Lipasti-University of Wisconsin 7 

From [Hughes, SIMD Synthesis Lecture] 

• Amdahl’s Law… 



SIMD History 

• Vector machines, supercomputing 

– Illiac IV, CDC Star-100, TI ASC,  

– Cray-1: properly architected (by Cray-2 gen) 

• Incremental adoption in microprocessors 

– Intel Pentium MMX: vectors of bytes 

– Subsequently: SSEx/AVX-y, now AVX-512 

– Also SPARC, PowerPC, ARM, … 

– Improperly architected… 

– Also GPUs from AMD/ATI and Nvidia (later) 

 Mikko Lipasti-University of Wisconsin 8 



Register Overlays 

Mikko Lipasti-University of Wisconsin 9 

From [Hughes, SIMD Synthesis Lecture] 



SIMD Challenges 
• Remainders 

– Fixed vector length, software has to fix up 

– Properly architected: VL is supported in HW 

• Control flow deviation 

– Conditional behavior in loop body 

– Properly architected: vector masks 

• Memory access 

– Alignment restrictions 

– Virtual memory, page faults (completion masks) 

– Irregular accesses: properly architected gather/scatter 

• Dependence analysis (next) 

Mikko Lipasti-University of Wisconsin 10 
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Lecture Outline 

• SIMD introduction 

• Automatic Parallelization for SIMD machines 

• Vector Architectures 

– Cray-1 case study 
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Automatic Parallelization 

• Start with sequential programming model 

• Let the compiler attempt to find parallelism 

– It can be done… 

– We will look at one of the success stories 

• Commonly used for SIMD computing – vectorization  

– Useful for MIMD systems, also -- concurrentization 

• Often done with FORTRAN 

– But, some success can be achieved with C 

 (Compiler address disambiguation is more difficult with C) 
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Automatic Parallelization 

• Consider operations on arrays of data 
do I=1,N  

• A(I,J) = B(I,J) + C(I,J) 

end do 

– Operations along one dimension involve vectors 

• Loop level parallelism 

– Do all – all loop iterations are independent 

• Completely parallel 

– Do across – some dependence across loop iterations 

• Partly parallel 

 

A(I,J) = A(I-1,J) + C(I,J) * B(I,J) 
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Data Dependence 
 

• Independence  Parallelism 
OR, dependence inhibits parallelism 

 

S1:   A=B+C  

S2:   D=A+2 

S3:   A=E+F 

 

• True Dependence  (RAW):  
 S1  S2 

• Antidependence (WAR): 
 S2 - S3 

• Output Dependence (WAW):  
 S1 o S3 
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Data Dependence Applied to Loops 

• Similar relationships for loops 

– But consider iterations 

  do  I=1,2 

S1:   A(I)=B(I)+C(I)  

S2:   D(I)=A(I) 

  end do 

 

• S1 = S2 
– Dependence involving A, but on same loop iteration 
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Data Dependence Applied to Loops 

• S1 < S2 

  do  I=1,2 

S1:   A(I)=B(I)+C(I)  

S2:   D(I)=A(I-1) 

  end do 

– Dependence involving A, but read occurs on next loop iteration 

– Loop carried dependence 

 

• S2 -
< S1 

– Antidependence involving A, write occurs on next loop iteration 

  do  I=1,2 

S1:   A(I)=B(I)+C(I)  

S2:   D(I)=A(I+1) 

  end do 
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Loop Carried Dependence 
 Definition 

• do   I = 1, N 

S1:    X(f(i)) = F(...) 

S2:  A = X(g(i)) ... 

  end do 

 

 S1  S2 : is loop-carried 

• if there exist i1, i2 where 

  1 i1 <  i2   N  and  f(i1) = g(i2 ) 

 

 If f and g can be arbitrary functions, the problem is essentially unsolvable. 

 However, if (for example) 

 

  f(i) = c*I + j and g(i) = d*I + k 
 

 there are methods for detecting dependence. 
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Loop Carried Dependences 
• GCD test 

  do   I = 1, N 

S1:    X(c*I + j ) = F(...) 

S2:  A = X(d*I + k) ... 

  end do 

 

f(x) = g(y)  if  c*I + j = d*I + k 
 

This has a solution iff  gcd(c, d ) | k- j 

• Example 
A(2*I) = 

       = A(2*I +1) 

GCD(2,2) does not divide 1 - 0 

• The GCD test is of limited use because it is very conservative 
often gcd(c,d) = 1 
 X(4i+1) = F(X(5i+2)) 

• Other, more complex tests have been developed 
 e.g. Banerjee's Inequality, polyhedral analysis 
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Vector Code Generation 
• In a vector architecture, a vector instruction 

performs identical operations on vectors of data 

• Generally, the vector operations are independent 

– A common exception is reductions (horizontal ops) 

• In general, to vectorize: 

– There should be no cycles in the dependence graph 

– Dependence flows should be downward 

  some rearranging of code may be needed. 
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Vector Code Generation: Example 
 do I = 1, N 

S1:    A(I) = B(I) 

S2:    C(I) = A(I) + B(I) 

S3:    E(I) = C(I+1) 

 end do 

• Construct dependence graph 
S1: 

  
S2: 

 
- 

S3: 

Vectorizes (after re-ordering S2: and S3:  due to antidependence) 
S1:    A(I:N) = B(I:N) 

S3:    E(I:N) = C(2:N+1) 

S2:    C(I:N) = A(I:N) + B(I:N) 
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Multiple Processors (Concurrentization) 
• Often used on outer loops 

• Example 

 do  I = 1, N 

  do  J = 2, N 

S1:        A(I,J) = B(I,J) + C(I,J) 

S2:        C(I,J) = D(I,J)/2 

S3:        E(I,J) = A(I,J-1)**2 + E(I,J-1) 

  end do 

 end do 

• Data Dependences & Directions 

  S1 =, < S3 

  S1 =, = S2 

  S3 =, < S3 

• Observations 

– All dependence directions for I loop  are = 

  Iterations of the I loop can be scheduled in parallel 
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Scheduling 
• Data Parallel Programming Model 

– SPMD (single program, multiple data) 

• Compiler can pre-schedule: 
– Processor 1 executes 1st N/P iterations, 

– Processor 2 executes next N/P iterations 

– Processor P executes last N/P iterations 

– Pre-scheduling is effective if execution time is nearly identical for 
each iteration 

• Self-scheduling is often used: 
–  If each iteration is large 

–  Time varies from iteration to iteration 

- iterations are placed in a "work queue” 

- a processor that is idle, or becomes idle takes the next block of 
work from the queue (critical section) 
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Code Generation with Dependences 
  do  I = 2, N 

 S1:  A(I) = B(I) + C(I) 

 S2:  C(I) = D(I) * 2 

 S3:  E(I) = C(I) + A(I-1) 

 end do 

  

• Data Dependences & Directions 
  S1 -

= S2 
  S1 <  S3 
  S2 =  S3 
      
• Parallel Code on  N-1  Processors 
 S1:  A(I) = B(I) + C(I) 

        signal(I) 

 S2:  C(I) = D(I) * 2 

        if (I > 2) wait(I-1) 

 S3:  E(I) = C(I) + A(I-1) 

• Observation  
– Weak data-dependence tests may add unnecessary synchronization. 
 Good dependence testing crucial for high performance 
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Reducing Synchronization 
  do  I = 1, N 

 S1:      A(I) = B(I) + C(I) 

 S2:      D(I) = A(I) * 2 

 S3:      SUM  = SUM + A(I) 

  end do 

• Parallel Code:  Version 1 
  do  I = p, N, P 

 S1:      A(I) = B(I) + C(I) 

 S2:      D(I) = A(I) * 2 

       if (I > 1) wait(I-1) 

 S3:      SUM  = SUM + A(I) 

       signal(I) 

  end do  
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Reducing Synchronization, contd. 
• Parallel Code:  Version 2 

  SUMX(p) = 0 
  do  I = p, N, P 

 S1:      A(I) = B(I) + C(I) 

 S2:      D(I) = A(I) * 2 

 S3:      SUMX(p) = SUMX(p) + A(I) 

  end do 

  barrier synchronize 

  add partial sums 

• Not always safe (bit-equivalent): why? 
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Vectorization vs Concurrentization 
• When a system is a vector MP, when should 

vector/concurrent code be generated? 

  do  J = 1,N 

   do  I = 1,N 

 S1:       A(I,J+1) = B(I,J) + C(I,J) 

 S2:       D(I,J) = A(I,J) * 2 

   end do 

  end do 

• Parallel & Vector Code:  Version 1 

  doacross J = 1,N 

 S1:   A(1:N,J+1) = B(1:N,J)+C(1:N,J) 

   signal(J) 

          if (J > 1) wait (J-1) 

 S2:     D(1:N,J)  = A(1:N,J) * 2 

  end do 
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Vectorization vs Concurrentization 
• Parallel & Vector Code:  Version 2 
 Vectorize on J, but non-unit stride memory access 
 (assuming Fortran Column Major storage order) 
 

  doall I = 1,N 

 S1:  A(I,2:N+1) = B(I,1:N) + C(I,1:N) 

 S2:  D(I,1:N) = A(I,1:N) * 2 

  end do 

   

• Need support for gather/scatter 
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Summary 

• Vectorizing compilers have been a success 

• Dependence analysis is critical to any auto-parallelizing 
scheme 

– Software (static) disambiguation 

– C pointers are especially difficult 

• Can also be used for improving performance of sequential 
programs 

– Loop interchange 

– Fusion 

– Etc. 
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Aside: Thread-Level Speculation 

• Add hardware to resolve difficult concurrentization problems 

• Memory dependences 
– Speculate independence 

– Track references (cache versions, r/w bits, similar to TM) 

– Roll back on  violations 

• Thread/task generation 
– Dynamic task generation/spawn (Multiscalar) 

• References 
– Gurindar S. Sohi , Scott E. Breach , T. N. Vijaykumar, Multiscalar processors, 

Proceedings of the 22nd annual international symposium on Computer 
architecture, p.414-425, June 22-24, 1995 

– J. Steffan , T Mowry, The Potential for Using Thread-Level Data Speculation to 
Facilitate Automatic Parallelization, Proceedings of the 4th International 
Symposium on High-Performance Computer Architecture, p.2, January 31-
February 04, 1998 
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Cray-1 Architecture 

• Circa 1976 

• 80 MHz clock 

– When high performance mainframes were 20 MHz 

• Scalar instruction set 

– 16/32 bit instruction sizes 

• Otherwise conventional RISC 

– 8 S register (64-bits) 

– 8 A registers (24-bits) 

• In-order pipeline 

– Issue in order 

– Can complete out of order (no precise traps) 
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Cray-1 Vector ISA 

• 8 vector registers 

– 64 elements 

– 64 bits per element (word 
length) 

– Vector length (VL) register 

• RISC format 

– Vi  Vj OP Vk 

– Vi  mem(Aj, disp) 

• Conditionals via vector mask 
(VM) register 

– VM  Vi pred Vj 

– Vi  V2 conditional on VM 
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Vector Example 
 
       Do 10 i=1,looplength 
          a(i) = b(i) * x + c(i) 
   10  continue 
 
  A1        looplength    .initial values: 
          A2        address(a)     .for the arrays 
          A3        address(b)    . 
          A4        address(c)     . 
          A5        0              .index value 
          A6        64            .max hardware VL 
          S1        x              .scalar x in register S1 
  VL        A1            .set VL – performs mod function 
                                . 
         BrC      done, A1<=0     .branch if nothing to do 
 
more:         V3        A4,A5          .load c indexed by A5 – addr mode not in Cray-1 
  V1        A3,A5          .load b indexed by A5 
          V2        V1 * S1        .vector times scalar 
          V4        V2 + V3        .add in c 
          A2,A5  V4              .store to a indexed by A5 
          A7        VL            .read actual VL 
          A1        A1 – A7       .remaining iteration count 
          A5        A5 + A7        .increment index value 
  VL        A6  . set VL for next iteration 
          BrC      more, A1>0    .branch if more work 
done: 
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Compare with Scalar 
 
       Do 10 i=1,looplength 
          a(i) = b(i) * x + c(i) 
   10  continue 
 

  2 loads 
  1 store 
  2 FP 
  1 branch 
  1 index increment (at least) 
  1 loop count increment 
 
total --   8 instructions per iteration 
 
4-wide superscalar => up to 1 FP op per cycle 
vector, with chaining => up to 2 FP ops per cycle  (assuming mem b/w) 
 
Also, in a CMOS microprocessor would save a lot of energy 
                                . 
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Vector Conditional Loop 

 
     do 80 i = 1,looplen 

         if (a(i).eq.b(i)) then 
                 c(i) = a(i) + e(i) 
         endif 
80    continue 
 
 
V1     A1              .load a(i) 
V2    A2              .load b(i) 
VM    V1 == V2      .compare a and b; result to VM 
V3     A3; VM         .load e(i) under mask 
V4     V1 + V3; VM   .add under mask 
A4    V4; VM        .store to c(i) under mask 
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Vector Conditional Loop 
 Gather/Scatter Method (used in later Cray machines) 
    do 80 i = 1,looplen 

         if (a(i).eq.b(i)) then 
                 c(i) = a(i) + e(i) 
         endif 
80    continue 
 
 
V1    A1              .load a(i) 
V2    A2              .load b(i) 
VM   V1 == V2      .compare a and b; result to VM 
V5    IOTA(VM)      .form index set 
VL    pop(VM)       .find new VL (population count) 
V6    A1, V5         .gather a(i) values 
V3    A3, V5         .gather e(i) values 
V4    V6 + V3       .add a and e 
A4,V11   V4             .scatter sum into c(i) 
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Lecture Summary 

• SIMD introduction 

• Automatic Parallelization 

• Vector Architectures 

– Cray-1 case study 


