
ECE/CS 757: Advanced
Computer Architecture II

SIMD

Instructor:Mikko H Lipasti

Spring 2017
University of Wisconsin-Madison

Lecture notes based on slides created by John Shen,
Mark Hill, David Wood, Guri Sohi, Jim Smith, Natalie

Enright Jerger, Michel Dubois, Murali Annavaram, Per
Stenström and probably others

04/07 ECE/CS 757; copyright J. E. Smith, 2007 2

SIMD & MPP Readings

Read: [20] C. Hughes, “Single-Instruction Multiple-Data
Execution,” Synthesis Lectures on Computer Architecture,
http://www.morganclaypool.com/doi/abs/10.2200/S00647ED1V
01Y201505CAC032

Review: [21] Steven L. Scott, Synchronization and Communication
in the T3E Multiprocessor, Proceedings of International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 26-36, October 1996.

http://www.morganclaypool.com/doi/abs/10.2200/S00647ED1V01Y201505CAC032
http://www.morganclaypool.com/doi/abs/10.2200/S00647ED1V01Y201505CAC032
http://www.morganclaypool.com/doi/abs/10.2200/S00647ED1V01Y201505CAC032

04/07 ECE/CS 757; copyright J. E. Smith, 2007 3

Lecture Outline

• SIMD introduction

• Automatic Parallelization for SIMD machines

• Vector Architectures

– Cray-1 case study

SIMD vs. Alternatives

Mikko Lipasti-University of Wisconsin 4

From [Hughes, SIMD Synthesis Lecture]

SIMD vs. Superscalar

Mikko Lipasti-University of Wisconsin 5

From [Hughes, SIMD Synthesis Lecture]

Multithreaded vs. Multicore

Mikko Lipasti-University of Wisconsin 6

From [Hughes,
SIMD Synthesis
Lecture]

SIMD Efficiency

Mikko Lipasti-University of Wisconsin 7

From [Hughes, SIMD Synthesis Lecture]

• Amdahl’s Law…

SIMD History

• Vector machines, supercomputing

– Illiac IV, CDC Star-100, TI ASC,

– Cray-1: properly architected (by Cray-2 gen)

• Incremental adoption in microprocessors

– Intel Pentium MMX: vectors of bytes

– Subsequently: SSEx/AVX-y, now AVX-512

– Also SPARC, PowerPC, ARM, …

– Improperly architected…

– Also GPUs from AMD/ATI and Nvidia (later)

 Mikko Lipasti-University of Wisconsin 8

Register Overlays

Mikko Lipasti-University of Wisconsin 9

From [Hughes, SIMD Synthesis Lecture]

SIMD Challenges
• Remainders

– Fixed vector length, software has to fix up

– Properly architected: VL is supported in HW

• Control flow deviation

– Conditional behavior in loop body

– Properly architected: vector masks

• Memory access

– Alignment restrictions

– Virtual memory, page faults (completion masks)

– Irregular accesses: properly architected gather/scatter

• Dependence analysis (next)

Mikko Lipasti-University of Wisconsin 10

04/07 ECE/CS 757; copyright J. E. Smith, 2007 11

Lecture Outline

• SIMD introduction

• Automatic Parallelization for SIMD machines

• Vector Architectures

– Cray-1 case study

04/07 ECE/CS 757; copyright J. E. Smith, 2007 12

Automatic Parallelization

• Start with sequential programming model

• Let the compiler attempt to find parallelism

– It can be done…

– We will look at one of the success stories

• Commonly used for SIMD computing – vectorization

– Useful for MIMD systems, also -- concurrentization

• Often done with FORTRAN

– But, some success can be achieved with C

 (Compiler address disambiguation is more difficult with C)

04/07 ECE/CS 757; copyright J. E. Smith, 2007 13

Automatic Parallelization

• Consider operations on arrays of data
do I=1,N

• A(I,J) = B(I,J) + C(I,J)

end do

– Operations along one dimension involve vectors

• Loop level parallelism

– Do all – all loop iterations are independent

• Completely parallel

– Do across – some dependence across loop iterations

• Partly parallel

A(I,J) = A(I-1,J) + C(I,J) * B(I,J)

04/07 ECE/CS 757; copyright J. E. Smith, 2007 14

Data Dependence

• Independence  Parallelism
OR, dependence inhibits parallelism

S1: A=B+C

S2: D=A+2

S3: A=E+F

• True Dependence (RAW):
 S1  S2

• Antidependence (WAR):
 S2 - S3

• Output Dependence (WAW):
 S1 o S3

04/07 ECE/CS 757; copyright J. E. Smith, 2007 15

Data Dependence Applied to Loops

• Similar relationships for loops

– But consider iterations

 do I=1,2

S1: A(I)=B(I)+C(I)

S2: D(I)=A(I)

 end do

• S1 = S2
– Dependence involving A, but on same loop iteration

04/07 ECE/CS 757; copyright J. E. Smith, 2007 16

Data Dependence Applied to Loops

• S1 < S2

 do I=1,2

S1: A(I)=B(I)+C(I)

S2: D(I)=A(I-1)

 end do

– Dependence involving A, but read occurs on next loop iteration

– Loop carried dependence

• S2 -
< S1

– Antidependence involving A, write occurs on next loop iteration

 do I=1,2

S1: A(I)=B(I)+C(I)

S2: D(I)=A(I+1)

 end do

04/07 ECE/CS 757; copyright J. E. Smith, 2007 17

Loop Carried Dependence
 Definition

• do I = 1, N

S1: X(f(i)) = F(...)

S2: A = X(g(i)) ...

 end do

 S1  S2 : is loop-carried

• if there exist i1, i2 where

 1 i1 < i2  N and f(i1) = g(i2)

 If f and g can be arbitrary functions, the problem is essentially unsolvable.

 However, if (for example)

 f(i) = c*I + j and g(i) = d*I + k

 there are methods for detecting dependence.

04/07 ECE/CS 757; copyright J. E. Smith, 2007 18

Loop Carried Dependences
• GCD test

 do I = 1, N

S1: X(c*I + j) = F(...)

S2: A = X(d*I + k) ...

 end do

f(x) = g(y) if c*I + j = d*I + k

This has a solution iff gcd(c, d) | k- j

• Example
A(2*I) =

 = A(2*I +1)

GCD(2,2) does not divide 1 - 0

• The GCD test is of limited use because it is very conservative
often gcd(c,d) = 1
 X(4i+1) = F(X(5i+2))

• Other, more complex tests have been developed
 e.g. Banerjee's Inequality, polyhedral analysis

04/07
ECE/CS 757; copyright J. E. Smith,

2007
19

Vector Code Generation
• In a vector architecture, a vector instruction

performs identical operations on vectors of data

• Generally, the vector operations are independent

– A common exception is reductions (horizontal ops)

• In general, to vectorize:

– There should be no cycles in the dependence graph

– Dependence flows should be downward

  some rearranging of code may be needed.

04/07
ECE/CS 757; copyright J. E. Smith,

2007
20

Vector Code Generation: Example
 do I = 1, N

S1: A(I) = B(I)

S2: C(I) = A(I) + B(I)

S3: E(I) = C(I+1)

 end do

• Construct dependence graph
S1:

 
S2:

 
-

S3:

Vectorizes (after re-ordering S2: and S3: due to antidependence)
S1: A(I:N) = B(I:N)

S3: E(I:N) = C(2:N+1)

S2: C(I:N) = A(I:N) + B(I:N)

04/07
ECE/CS 757; copyright J. E. Smith,

2007
21

Multiple Processors (Concurrentization)
• Often used on outer loops

• Example

 do I = 1, N

 do J = 2, N

S1: A(I,J) = B(I,J) + C(I,J)

S2: C(I,J) = D(I,J)/2

S3: E(I,J) = A(I,J-1)**2 + E(I,J-1)

 end do

 end do

• Data Dependences & Directions

 S1 =, < S3

 S1 =, = S2

 S3 =, < S3

• Observations

– All dependence directions for I loop are =

  Iterations of the I loop can be scheduled in parallel

04/07
ECE/CS 757; copyright J. E. Smith,

2007
22

Scheduling
• Data Parallel Programming Model

– SPMD (single program, multiple data)

• Compiler can pre-schedule:
– Processor 1 executes 1st N/P iterations,

– Processor 2 executes next N/P iterations

– Processor P executes last N/P iterations

– Pre-scheduling is effective if execution time is nearly identical for
each iteration

• Self-scheduling is often used:
– If each iteration is large

– Time varies from iteration to iteration

- iterations are placed in a "work queue”

- a processor that is idle, or becomes idle takes the next block of
work from the queue (critical section)

04/07
ECE/CS 757; copyright J. E. Smith,

2007
23

Code Generation with Dependences
 do I = 2, N

 S1: A(I) = B(I) + C(I)

 S2: C(I) = D(I) * 2

 S3: E(I) = C(I) + A(I-1)

 end do

• Data Dependences & Directions
 S1 -

= S2
 S1 < S3
 S2 = S3

• Parallel Code on N-1 Processors
 S1: A(I) = B(I) + C(I)

 signal(I)

 S2: C(I) = D(I) * 2

 if (I > 2) wait(I-1)

 S3: E(I) = C(I) + A(I-1)

• Observation
– Weak data-dependence tests may add unnecessary synchronization.
 Good dependence testing crucial for high performance

04/07
ECE/CS 757; copyright J. E. Smith,

2007
24

Reducing Synchronization
 do I = 1, N

 S1: A(I) = B(I) + C(I)

 S2: D(I) = A(I) * 2

 S3: SUM = SUM + A(I)

 end do

• Parallel Code: Version 1
 do I = p, N, P

 S1: A(I) = B(I) + C(I)

 S2: D(I) = A(I) * 2

 if (I > 1) wait(I-1)

 S3: SUM = SUM + A(I)

 signal(I)

 end do

04/07
ECE/CS 757; copyright J. E. Smith,

2007
25

Reducing Synchronization, contd.
• Parallel Code: Version 2

 SUMX(p) = 0
 do I = p, N, P

 S1: A(I) = B(I) + C(I)

 S2: D(I) = A(I) * 2

 S3: SUMX(p) = SUMX(p) + A(I)

 end do

 barrier synchronize

 add partial sums

• Not always safe (bit-equivalent): why?

04/07
ECE/CS 757; copyright J. E. Smith,

2007
26

Vectorization vs Concurrentization
• When a system is a vector MP, when should

vector/concurrent code be generated?

 do J = 1,N

 do I = 1,N

 S1: A(I,J+1) = B(I,J) + C(I,J)

 S2: D(I,J) = A(I,J) * 2

 end do

 end do

• Parallel & Vector Code: Version 1

 doacross J = 1,N

 S1: A(1:N,J+1) = B(1:N,J)+C(1:N,J)

 signal(J)

 if (J > 1) wait (J-1)

 S2: D(1:N,J) = A(1:N,J) * 2

 end do

04/07
ECE/CS 757; copyright J. E. Smith,

2007
27

Vectorization vs Concurrentization
• Parallel & Vector Code: Version 2
 Vectorize on J, but non-unit stride memory access
 (assuming Fortran Column Major storage order)

 doall I = 1,N

 S1: A(I,2:N+1) = B(I,1:N) + C(I,1:N)

 S2: D(I,1:N) = A(I,1:N) * 2

 end do

• Need support for gather/scatter

04/07 ECE/CS 757; copyright J. E. Smith, 2007 28

Summary

• Vectorizing compilers have been a success

• Dependence analysis is critical to any auto-parallelizing
scheme

– Software (static) disambiguation

– C pointers are especially difficult

• Can also be used for improving performance of sequential
programs

– Loop interchange

– Fusion

– Etc.

04/07 ECE/CS 757; copyright J. E. Smith, 2007 29

Aside: Thread-Level Speculation

• Add hardware to resolve difficult concurrentization problems

• Memory dependences
– Speculate independence

– Track references (cache versions, r/w bits, similar to TM)

– Roll back on violations

• Thread/task generation
– Dynamic task generation/spawn (Multiscalar)

• References
– Gurindar S. Sohi , Scott E. Breach , T. N. Vijaykumar, Multiscalar processors,

Proceedings of the 22nd annual international symposium on Computer
architecture, p.414-425, June 22-24, 1995

– J. Steffan , T Mowry, The Potential for Using Thread-Level Data Speculation to
Facilitate Automatic Parallelization, Proceedings of the 4th International
Symposium on High-Performance Computer Architecture, p.2, January 31-
February 04, 1998

04/07 ECE/CS 757; copyright J. E. Smith, 2007 30

Cray-1 Architecture

• Circa 1976

• 80 MHz clock

– When high performance mainframes were 20 MHz

• Scalar instruction set

– 16/32 bit instruction sizes

• Otherwise conventional RISC

– 8 S register (64-bits)

– 8 A registers (24-bits)

• In-order pipeline

– Issue in order

– Can complete out of order (no precise traps)

04/07 ECE/CS 757; copyright J. E. Smith, 2007 31

Cray-1 Vector ISA

• 8 vector registers

– 64 elements

– 64 bits per element (word
length)

– Vector length (VL) register

• RISC format

– Vi  Vj OP Vk

– Vi  mem(Aj, disp)

• Conditionals via vector mask
(VM) register

– VM  Vi pred Vj

– Vi  V2 conditional on VM

04/07 ECE/CS 757; copyright J. E. Smith, 2007 32

Vector Example

 Do 10 i=1,looplength
 a(i) = b(i) * x + c(i)
 10 continue

 A1  looplength .initial values:
 A2  address(a) .for the arrays
 A3  address(b) .
 A4  address(c) .
 A5  0 .index value
 A6  64 .max hardware VL
 S1  x .scalar x in register S1
 VL  A1 .set VL – performs mod function
 .
 BrC done, A1<=0 .branch if nothing to do

more: V3  A4,A5 .load c indexed by A5 – addr mode not in Cray-1
 V1  A3,A5 .load b indexed by A5
 V2  V1 * S1 .vector times scalar
 V4  V2 + V3 .add in c
 A2,A5  V4 .store to a indexed by A5
 A7  VL .read actual VL
 A1  A1 – A7 .remaining iteration count
 A5  A5 + A7 .increment index value
 VL  A6 . set VL for next iteration
 BrC more, A1>0 .branch if more work
done:

04/07 ECE/CS 757; copyright J. E. Smith, 2007 33

Compare with Scalar

 Do 10 i=1,looplength
 a(i) = b(i) * x + c(i)
 10 continue

 2 loads
 1 store
 2 FP
 1 branch
 1 index increment (at least)
 1 loop count increment

total -- 8 instructions per iteration

4-wide superscalar => up to 1 FP op per cycle
vector, with chaining => up to 2 FP ops per cycle (assuming mem b/w)

Also, in a CMOS microprocessor would save a lot of energy
 .

04/07 ECE/CS 757; copyright J. E. Smith, 2007 34

Vector Conditional Loop

 do 80 i = 1,looplen

 if (a(i).eq.b(i)) then
 c(i) = a(i) + e(i)
 endif
80 continue

V1  A1 .load a(i)
V2  A2 .load b(i)
VM  V1 == V2 .compare a and b; result to VM
V3  A3; VM .load e(i) under mask
V4  V1 + V3; VM .add under mask
A4  V4; VM .store to c(i) under mask

04/07 ECE/CS 757; copyright J. E. Smith, 2007 35

Vector Conditional Loop
 Gather/Scatter Method (used in later Cray machines)
 do 80 i = 1,looplen

 if (a(i).eq.b(i)) then
 c(i) = a(i) + e(i)
 endif
80 continue

V1  A1 .load a(i)
V2  A2 .load b(i)
VM  V1 == V2 .compare a and b; result to VM
V5  IOTA(VM) .form index set
VL  pop(VM) .find new VL (population count)
V6  A1, V5 .gather a(i) values
V3  A3, V5 .gather e(i) values
V4  V6 + V3 .add a and e
A4,V11  V4 .scatter sum into c(i)

04/07 ECE/CS 757; copyright J. E. Smith, 2007 36

Lecture Summary

• SIMD introduction

• Automatic Parallelization

• Vector Architectures

– Cray-1 case study

