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• Introduction 

• Software Scaling 

• Hardware Scaling 

• Case studies 
– Cray T3D & T3E 
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MPP Definition etc. 
• A (large) bunch of computers connected 

with a (very) high performance network 
– Primarily execute highly parallel application 

programs 

• Applications 
– Typically number crunching 
– Also used for computation-intensive 

commercial apps 
•  e.g. data mining 

• May use distributed memory 
– Computers or small SMP as nodes of large 

distributed memory system 

• OR shared memory 
– Processors connected to large shared 

memory 
• Less common today 

• Also hybrids 
– Shared real space, assists for load/stores P ro cesso r 0 P ro c esso r 1 P ro cesso r N -1
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Scalability 
• Term comes up often in MPP systems 

• Over time: 

– Computer system components become smaller and cheaper 

    more processors, more memory 

– Range of system sizes within a product family 

– Problem sizes become larger 

• simulate the entire airplane rather than the wing 

– Required accuracy becomes greater 

• forecast the weather a week in advance rather than 3 days 

• Should designers come up with new system architectures for each 
generation? 

– Or design a scalable architecture that can survive for many generations 

– And be useful for a range of systems within a product family 
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Scaling 
• How do algorithms and hardware behave as systems, size, accuracies become 

greater? 

• Intuitively: “Performance” should scale linearly with cost 

– But, easier said than done 

• Software Scaling 

– Algorithms, problem size, computational complexity, error analysis 

• Hardware Scaling 

– Lower level performance features “scaling” together 
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Cost 
• Cost is a function of more than just the processor. 

– Memory 

– Interconnect 

– I/O 

• Cost is a complex function of many hardware components and software 

• Cost is often not a "smooth" function 

– Often a function of packaging 

• how many pins on a processor chip 

• how many processors on a board 

• how many boards in a chassis 
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Performance 
• How does performance vary with added processors? 

– Depends on inherently serial portion vs. parallel portion 

– Depends on problem size 

– Depends on architecture and algorithm 

– Depends on computation vs. communication 
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Speedup Review 
Let Speedup = Tserial / Tparallel 

• Amdahl's law 

  f = fraction of serial work;  

  (1-f) = parallel fraction 

• Speedup with N processors, S(N) = 1 / (f + (1-f)/N)) 

  Maximum speedup = 1/f 

  Eg. 10% serial work =>  maximum speedup is 10. 
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Effect of Problem Size 
• Amdahl's law assumes constant problem size 

– Or, serial portion grows linearly with parallel portion 

• Often, serial portion does not grow linearly with parallel 
portions 
– And, parallel processors solve larger problems. 

• Example: NxN  Matrix multiplication 

  Initialize matrices, serial, complexity N 

  Multiply matrices, parallel, complexity N3 
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Problem Constrained Scaling 
• User wants to solve same problem, only faster 

– E.g., Video compression 

• Amdahl’s law is a limitation 

• In many cases, problem sizes grow 
– Reevaluating Amdahl's Law, John L. Gustafson, Communications of the ACM 31(5), 1988. 

pp. 532-533. 
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Example: Barnes-Hut Galaxy 
Simulation 

• Simulates gravitational interactions of N-
bodies in space 

– N2 complexity 

• Partition space into regions with roughly 
equal numbers of bodies 

– Model region as a single point w/ gravity at 
center 

– Becomes NlogN complexity 
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Galaxy Simulation w/ Constant Problem Scaling 
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• Let problem size scale linearly with number of processors. 

 (assumes memory scales linearly with  no. of processors) 

• Scaled Speedup: rate(p)/rate(1) 

SpeedupMC(p) = work(p)/time(p)*time(1)/work(1) 

 

• Even with good speedups, can lead to large increases in execution time if 
work grows faster than linearly in memory usage 

 

Memory Constrained Scaling 
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Memory Constrained Scaling 
• Matrix multiply example: 

  f = N / (N + N3), and N grows so that N3 term dominates  

  S(1) = 1 

  S(10) ~ 10 

  S(100) ~ 100 

  S(1000) ~ 1000 

• BUT, 1000 times increase in problem size  

  1,000,000 times increase in execution time, 

  even with 1000 processors. 
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Time Constrained Scaling 
• Execution time is kept fixed as system scales 

– User has fixed time to use machine or wait for result 

– Often realistic, e.g.  
• best weather forecast overnight 

• Render next frame in real time at 60fps  

• Performance = Work/Time and time is constant, so: 

   SpeedupTC(p)  = work(p)/work(1) 
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Time Constrained Scheduling 
• Overheads can become a problem: 

• For matrix multiply, data set size can be increased by N 1/3 

 for 1000 x more processors, data size increases by 10. 

• Problem grows slower than processors, 

• Eventually performance gain will flatten 

– And diminish due to overheads associated with smaller amounts of data 
per processor. 

– Start with 100 element array  100 elements per 1 processor 

– Scale up to 1000 processors  1 element per processor 
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Scaling Methodology 
• Often problem sizes are increased to reduce error 

– E.g. finer grids or time steps 

• Must understand application to scale meaningfully 
(would user scale grid, time step, error bound, or some 
combination?) 

• Equal Error Scaling  

– Scale problem so that all sources of error have equal contribution 
to total error 
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Example: Barnes-Hut Galaxy Simulation 
• Different parameters govern different sources of error at different rates 

– Number of bodies  (n) 

– Time-step resolution  (dt) 

– Force calculation accuracy (fa) 

• Scaling Rule 

  All components of simulation error should scale at the same rate 

• Naïve memory constrained scaling 

– Scaling up problem size (and number of processors) 

– Increases total execution time slightly (due to nlogn nature of problem) 

• Equal error scaling 

– Scaling up by a factor of k adds an additional factor of k3/4 

kn reduces error by sqrt(k) 

Error is ~dt^2 so to get equal error scaling of sqrt(k) must decrease dt by by factor of k^0.25 (4th root) 

Error is ~(fa)^2 so to get equal error scaling of sqrt(k) must decrease (fa) by factor of k^0.25 

These in combination cause k^3/4 increase 
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Hardware Scaling 
• Bandwidth Scaling 

– should increase proportional to # procs. 

– crossbars   

– multi-stage nets   

• Latency Scaling 

– ideally remain constant 

– in practice, logn scaling can be achieved 

– local memories help (local latency may be more important than global) 

– latency may be dominated by overheads, anyway 

• Cost Scaling 

– low overhead cost (most cost incremental) 

– in contrast to many large SMPs 

• Physical Scaling 

– loose vs. dense packing, 2D vs. 3D 

– chip level integration vs. commodity parts 
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Case Study: Cray T3D  
• Processing element nodes  

• 3D Torus interconnect  

• Wormhole routing  

• PE numbering  

• Local memory  

• Support circuitry  

• Prefetch  

• Messaging  

• Barrier synch  

• Fetch and inc.   

• Block transfers  
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Processing Element Nodes  
• Two Alpha 21064 processors per node   

• Shared block transfer engine (BLT) 

– DMA-like transfer of large blocks of data  

• Shared network interface/router  

• Synchronous 6.67 ns clock  
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Communication Links  

• Signals:  

– Data: 16 bits  

– Channel control: 4 bits  
• request/response, virt. channel buffer  

– Channel acknowledge: 4 bits  

• virt. channel buffer status  
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Routing  
• 3D Torus 

• Dimension order routing  

– may go in either + or - direction along a dimension  

• Virtual channels  

– Four virtual channel buffers per physical channel  

  two request channels, two response channels  

• Deadlock avoidance  

– In each dimension specify a "dateline" link  

– Packets that do not cross dateline use virtual channel 0  

– Packets that cross dateline use virtual channel 1  
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Network Routers  
• Separate X,Y,Z dimensions 
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Processing 
Nodes  

• Processor: Alpha 21064  

• Support circuitry:  

– Address interpretation  

– reads and writes  

• (local/non-local)  

– data prefetch  

– messaging  

– barrier synch.  

– fetch and incr.  

– status  
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Processing Element Numbering 
• Physical  

– Includes all PEs in system 

• Logical 

– Ignores spare PEs; allows spares for failed nodes 

– These are available to software 

• Virtual 

– What the application software sees 

– OS does virtual to logical mapping 
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Address Interpretation  
• T3D needs:  

– 64 MB memory per node => 26 bits  

– up to 2048 nodes => 11 bits  

• Alpha 21064 provides:  

– 43-bit virtual address  

– 32-bit physical address  

• (+2 bits for mem mapped devices)  

  Annex registers in DTB  

– external to Alpha  

– 32-annex registers  

– map 32-bit address onto 48 bit node + 27-bit address   

– annex registers also contain function info  

– e.g. cache / non-cache accesses  

– DTB modified via load/locked store cond.  insts.  
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Data Prefetch  
• Architected Prefetch Queue  

– 1 word wide by 16 deep  

• Prefetch instruction:  

– Alpha prefetch hint => T3D prefetch  

• Performance  

– Allows multiple outstanding read requests  

– (normal 21064 reads are blocking)  
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Messaging  
• Message queues  

– 256 KBytes reserved space in local memory  

– => 4080 message packets + 16 overflow locations  

• Sending processor:  

– Uses Alpha PAL code  

– builds message packets of 4 words  

– plus address of receiving node  

• Receiving node  

– stores message  

– interrupts processor  

– processor sends an ack  

– processor may execute routine at address provided by message  

– (active messages)  

– if message queue full; NACK is sent  

– also, error messages may be generated by support circuitry  
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Barrier Synchronization  
• For Barrier or Eureka  

• Hardware implementation  

– hierarchical tree  

– bypasses in tree to limit its scope  

– masks for barrier bits to further 
limit scope   

– interrupting or non-interrupting  
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Fetch and Increment  
• Special hardware registers  

– 2 per node  

– user accessible  

– used for auto-scheduling tasks  

– (often loop iterations)  
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Block Transfer  
• Special block transfer engine  

– does DMA transfers  

– can gather/scatter among processing elements  

– up to 64K packets  

– 1 or 4 words per packet  

• Types of transfers  

– constant stride read/write  

– gather/scatter  

• Requires System Call  

– for memory protection  

     => big overhead  
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Cray T3E  
• T3D Post Mortem  

• T3E Overview  

• Global Communication  

• Synchronization  

• Message passing  

• Kernel performance  



(C) 2007 J. E. Smith     ECE/CS 757 

T3D Post Mortem  
• Very high performance interconnect  

– 3D torus worthwhile   

• Barrier network "overengineered"  

– Barrier synch not a significant fraction of runtime   

• Prefetch queue useful; should be more of them   

• Block Transfer engine not very useful  

– high overhead to setup  

– yet another way to access memory  

• DTB Annex difficult to use in general  

– one entry might have sufficed  

– every processor must have same mapping for physical page  
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T3E Overview  
• Alpha 21164 processors  

• Up to 2 GB per node   

• Caches  

– 8K L1 and 96K L2 on-chip   

– supports 2 outstanding 64-byte line fills   

– stream buffers to enhance cache  

– only local memory is cached  

– => hardware cache coherence straightforward  

• 512 (user) + 128 (system) E-registers for 
communication/synchronization  

• One router chip per processor  
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T3E Overview, contd.  
• Clock:  

– system (i.e. shell) logic at 75 MHz  

– proc at some multiple (initially 300 MHz)  

• 3D Torus Interconnect  

– bidirectional links  

– adaptive multiple path routing  

– links run at 300 MHz   
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Global Communication: E-registers  
• General Issue: 

– Cache line-based microprocessor interface inadequate 
• For strided accesses 
• For multiple outstanding accesses 

– Also, limited physical address space 

• Extend address space  
• Implement "centrifuging" function  
• Memory-mapped (in IO space)  
• Operations:  

– load/stores between E-registers and processor registers  
– Global E-register operations   

• transfer data to/from global memory  
• messaging  
• synchronization  
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Global Address Translation  

• E-reg block holds base and mask;  

– previously stored there as part of setup  

• Remote memory access (mem mapped store):  

– data bits: E-reg pointer(8) + address index(50)  

– address bits: Command  + src/dstn E-reg  
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Global Address Translation 
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Address Translation, contd.  
• Translation steps  

– Address index centrifuged with mask  => virt address + virt PE  

– Offset added to base => vseg + seg offset  

– vseg  translated => gseg + base PE  

– base PE + virtual PE => logical PE  

– logical PE through lookup table  => physical routing tag  

• GVA: gseg(6) + offset (32)  

– goes out over network to physical PE  

• at remote node, global translation => physical address   
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Global Communication: Gets and 
Puts  

• Get: global read  

– word (32 or 64-bits)  

– vector (8 words, with stride)  

– stride in access E-reg block  

• Put: global store  

• Full/Empty synchronization on E-regs   

• Gets/Puts may be pipelined  

– up to 480 MB/sec transfer rate between nodes  
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Synchronization  
• Atomic ops between E-regs and memory  

– Fetch & Inc  

– Fetch & Add  

– Compare & Swap  

– Masked Swap  

• Barrier/Eureka Synchronization  

– 32 BSUs per processor  

– accessible as memory-mapped registers 

• protected via address translation  

– BSUs have states and operations 

– State transition diagrams 

– Barrier/Eureka trees are embedded in 3D 
torus  

– use highest priority virtual channels  
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Message Passing  

• Message queues  

– arbitrary number  

– created in user or system mode  

– mapped into memory space  

– up to 128 MBytes  

• Message Queue Control Word in memory  

– tail pointer  

– limit value  

– threshold triggers interrupt  

– signal bit set when interrupt is triggered  

• Message Send  

– from block of 8 E-regs  

– Send command, similar to put  

• Queue head management done in software  

– swap can manage queue in two segments  
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T3E Summary  
• Messaging is done well...  

– within constraints of COTS processor  

• Relies more on high communication and memory bandwidth 
than caching  

 => lower perf on dynamic irregular codes  

 => higher perf on memory-intensive codes with  

 large communication  

• Centrifuge: probably unique  

• Barrier synch uses dedicated hardware but NOT dedicated 
network  



Recent Trends 
• High-end microprocessors now include vector FP & high-BW 

DRAM 
– Intel, AMD: SSEx/AVX 

– DDRx evolution, on-chip MCs 

– High-performance coherent caches: HT, QPI 

• Higher-throughput FP also available through PCIe GPGPUs 
– Nvidia’s CUDA, AMD OpenCL 

• Commodity NICs also provide high BW, low latency 
– 10Gbit/25Gbit/40Gbit ethernet, RDMA support 

– High-radix routers enable low-diameter datacenter topologies 

• Clusters built out of: 
–  2 socket SMP nodes, 16c/32t or more + GPGPU 

 



Lecture Summary 

• Introduction 

• Software Scaling 

• Hardware Scaling 

• Case studies 

– Cray T3D/Cray T3E 
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