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Motivation

e DRAM bandwidth utilization is critical
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Basic DRAM scheduling
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Motivation

* Fixed access policies like FR-FCFS for common case behavior.
* Not efficient in adapting to dynamic workload behavior.



Motivation

Where can we optimize?

e Select load that results in maximum CPU throughput
e Decide write to read bus turnaround dynamically
e Switch between open row/close row adaptively



Objective

* Modify scheduling policy according to program behavior

* Use reinforcement learning

* Eliminate human involvement in scheduling decisions



Why Reinforcement Learning

® Maximize long term throughput

e Examples
o If read traffic is heavy, prevent read to write bus turnaround
o Learn that a closed page policy leads to faster reads
o Learn that loads with many dependent instructions are high priority
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Simulator: USIMM

* Reads in program traces.

* Models upto 16 OoO cores

* Cache misses are sent to the DDR controller

* Upto 4 channels, 2 ranks/channel, 8 banks/rank

* USIMM takes care of respecting timing constraints



RL Formulation
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RL for writes
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RL for writes

> |mmediate reward of 1 for issuing a Write
> |If memory is busy, then Forced NOP

> Discount the reward when we are stuck with a Forced NOP



Global RL policy

States : Actions :

* Number of Writes * FCFS Read

* Number of Reads * FR-FCFS Write
* Number of Reads * FR-FCFS Read

to open row
* Precharge

e Forced NOP



Local RL Policy

Split DDR scheduler to 3 parts:
e Read RL Agent (Highest Priority)
* Write RL agent
» Adaptive Precharge module (Lowest Priority)



Local RL Policy

Why?
* State space does not explode, lower storage requirements
* Faster learning
* State-action-reward table interpretable for debugging



Write Policy

o Default write policy - Waiting for read queue to be empty for bus
turnaround

o RL agent overlaps reads with writes



Some possible policies

® Too many writes in the queue, time to drain

e or Parallelize Precharge and Activates across banks
o OK to pay WTR delay if reads and writes can be parallelized



Read RL agent

States : Actions :

* Expected best thread gain * |ssue FCFS

* Expected FCFS gain * |ssue FR-FCFS

* Expected FR-FCFS gain * |ssue best thread

e Number of reads to active row e Forced NOP



Read RL agent - Expected FCFS and FR-FCFS gain
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Read RL agent - Number of reads to active row
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Thread Cluster Memory Scheduling [2]

® Group threads into two clusters -
> Latency sensitive cluster
> Bandwidth sensitive cluster

® Prioritize latency sensitive cluster over bandwidth sensitive cluster
to improve throughput

e Employ different algorithms within each cluster



Latency sensitive cluster

least memory intensive thread
higher priority * — /

thread

Memory intensity - cache
misses per
thousand instructigns

thread

thread

* higher memory intensity

most memory intensive thread

e Leastintensive threads are always promptly serviced
e allows them to quickly resume their computation => make large contributions to overall system throughput.



Bandwidth sensitive cluster
|

A

periodically shuffle =>
increases fairness

Niceness - measures thread’s tendency to
cause interference or susceptibility to
interference

thread

)

Niceness

e higher niceness = > higher bank level parallelism => more priority
e |ower niceness => high row buffer locality => can cause interference to threads having more bank level parallelism
e prioritize based on niceness => |east nicest thread mostly deprioritized to avoid interference



Read RL agent - Expected best thread gain
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Row buffer Management/Precharge Policy

* Open page/Close page

* Popular choice

* |ntel adaptive open page policy
* dynamically decide open-page time interval

* Something less complicated than RL agent but better than rigid
policies.



Our adaptive precharge policy

 “bad_precharge” bit for each row, only close the row if
bad_precharge =0

* bad precharge =1 if a row was speculatively closed but referenced
again

* during normal operation, if a row is not immediately accessed again,
bad_precharge =0



Bad precharge

bad_precharge bit

Bank 1

@ Bank O
0
1
1
0
1 | ACTIVE ROW

ACTIVE ROW

Candidate for precharge during an idle cycle

Bank n

ACTIVE ROW




Results

We ran traces from the PARSEC benchmarks on our controller.
Financial Analysis

Computer Vision

Animation

Similarity Search

Data Mining

Ref - http://parsec.cs.princeton.edu/doc/parsec-report.pdf



Write RL agent
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RL Write agent improves over the Naive write agent by an average of 2%
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Read RL agent compares well with FR-FCFS
Performs marginally better than FR-FCFS in 10/15 workloads

Read RL Agent

B FRFCF: mReadRL
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Precharge Module
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% increase in Ld/%t commits

Overall Gain

bl-bl-fr-fr-1 cl-cl-cd-c2-1 Thawec2-c2-1 MT -1 st-st-=-5t-1

Performance improvement over write drain, FCFS and closed page policy



Issues Faced

e RL agent did not learn policy when the state space was large
o Used neural networks to generalize state-action-reward table
o Used smoothing functions to generalize state-action-reward table
o Figured splitting the agent into parts is a good way to test.

e Tried to involve deep learning to generalize Reward table
o Moved USIMM to C++ and integrated a deep learning framework
o Current state space too small for deep networks, not image-like.
o Convergence issues could arise with neural networks.



Conclusion

RL may work well for DDR controllers

State space formulation is key for RL

Convergence of the Reward/Q table is important.

Write policy is crucial for boost over conventional controllers.



Thank You



