Reinforcement Learning
based DRAM scheduling

Pavan Holla
Ayush Gupta
Rangapriya Parathasarathy

Motivation

e DRAM bandwidth utilization is critical

|:| | |
B FR-FCF5 m Optimistic B FR-FCF5 ™ Optimistic

Data Bus Utilization
o o
P i

Basic DRAM scheduling

Channel 0 DIMMs

A

Command

7

MCO Address

Data

 —

CPUs Channel 1

B RankO Rank 1

/ Row Decoder

Command

MC1 Address \ Column Mux

Data

 G—

Motivation

* Fixed access policies like FR-FCFS for common case behavior.
* Not efficient in adapting to dynamic workload behavior.

Motivation

Where can we optimize?

e Select load that results in maximum CPU throughput
e Decide write to read bus turnaround dynamically
e Switch between open row/close row adaptively

Objective

* Modify scheduling policy according to program behavior

* Use reinforcement learning

* Eliminate human involvement in scheduling decisions

Why Reinforcement Learning

® Maximize long term throughput

e Examples
o If read traffic is heavy, prevent read to write bus turnaround
o Learn that a closed page policy leads to faster reads
o Learn that loads with many dependent instructions are high priority

References

*[1] Ipek, Engin, et al. "Self-optimizing memory controllers: A
reinforcement learning approach." Computer Architecture, 2008.
ISCA'08. 35th International Symposium on. IEEE, 2008.

*[2] Kim, Yoongu, et al. "Thread cluster memory scheduling: Exploiting
differences in memory access behavior." Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on
Microarchitecture. [EEE Computer Society, 2010.

*[3] Ikeda, Takakazu, et al. "Request density aware fair memory
scheduling." 3rd JILP Workshop on Computer Architecture
Competitions: Memory Scheduling Championship, MSC. 2012.

Simulator: USIMM

* Reads in program traces.

* Models upto 16 OoO cores

* Cache misses are sent to the DDR controller

* Upto 4 channels, 2 ranks/channel, 8 banks/rank

* USIMM takes care of respecting timing constraints

RL Formulation

State \ Action
/ / Command

Transaction Queue

LG

X

Reward

S

Long Term Reward

DRAM

RL for writes

States : Actions :
State\ Actio,n\] .
/ :Command> e Number of Writes e Gate Writes
Transaction Queue s
-— g * Number of Reads * Issue Writes
" ..' e Time since last e Forced NOP

Read

RL for writes

> |mmediate reward of 1 for issuing a Write
> |If memory is busy, then Forced NOP

> Discount the reward when we are stuck with a Forced NOP

Global RL policy

States : Actions :

* Number of Writes * FCFS Read

* Number of Reads * FR-FCFS Write
* Number of Reads * FR-FCFS Read

to open row
* Precharge

e Forced NOP

Local RL Policy

Split DDR scheduler to 3 parts:
e Read RL Agent (Highest Priority)
* Write RL agent
» Adaptive Precharge module (Lowest Priority)

Local RL Policy

Why?
* State space does not explode, lower storage requirements
* Faster learning
* State-action-reward table interpretable for debugging

Write Policy

o Default write policy - Waiting for read queue to be empty for bus
turnaround

o RL agent overlaps reads with writes

Some possible policies

® Too many writes in the queue, time to drain

e or Parallelize Precharge and Activates across banks
o OK to pay WTR delay if reads and writes can be parallelized

Read RL agent

States : Actions :

* Expected best thread gain * |ssue FCFS

* Expected FCFS gain * |ssue FR-FCFS

* Expected FR-FCFS gain * |ssue best thread

e Number of reads to active row e Forced NOP

Read RL agent - Expected FCFS and FR-FCFS gain

FR-FCFS FR-FCFS

FCFs <«———] Blockinginst-1 FCFS «—— Blocking inst - 20

Transaction Queue Transaction Queue

Read RL agent - Number of reads to active row

FR-FCFS

FCFS <——

Transaction Queue

Thread Cluster Memory Scheduling [2]

® Group threads into two clusters -
> Latency sensitive cluster
> Bandwidth sensitive cluster

® Prioritize latency sensitive cluster over bandwidth sensitive cluster
to improve throughput

e Employ different algorithms within each cluster

Latency sensitive cluster

least memory intensive thread
higher priority * — /

thread

Memory intensity - cache
misses per
thousand instructigns

thread

thread

* higher memory intensity

most memory intensive thread

e Leastintensive threads are always promptly serviced
e allows them to quickly resume their computation => make large contributions to overall system throughput.

Bandwidth sensitive cluster
|

A

periodically shuffle =>
increases fairness

Niceness - measures thread’s tendency to
cause interference or susceptibility to
interference

thread

)

Niceness

e higher niceness = > higher bank level parallelism => more priority
e |ower niceness => high row buffer locality => can cause interference to threads having more bank level parallelism
e prioritize based on niceness => |east nicest thread mostly deprioritized to avoid interference

Read RL agent - Expected best thread gain

FCFS <«——— Read traffic - 20 FCFS ‘—_

Thread queue Thread Queue

Row buffer Management/Precharge Policy

* Open page/Close page

* Popular choice

* |ntel adaptive open page policy
* dynamically decide open-page time interval

* Something less complicated than RL agent but better than rigid
policies.

Our adaptive precharge policy

 “bad_precharge” bit for each row, only close the row if
bad_precharge =0

* bad precharge =1 if a row was speculatively closed but referenced
again

* during normal operation, if a row is not immediately accessed again,
bad_precharge =0

Bad precharge

bad_precharge bit

Bank 1

@ Bank O
0
1
1
0
1 | ACTIVE ROW

ACTIVE ROW

Candidate for precharge during an idle cycle

Bank n

ACTIVE ROW

Results

We ran traces from the PARSEC benchmarks on our controller.
Financial Analysis

Computer Vision

Animation

Similarity Search

Data Mining

Ref - http://parsec.cs.princeton.edu/doc/parsec-report.pdf

Write RL agent

bl-bl-fr-fr l-cl-c2-c2 Thewe -2 St-st-5- 5t

% Increasein committed LDJST
[wswerite drain)
(i}

RL Write agent improves over the Naive write agent by an average of 2%

15
= 1
@
]
A ;
5o
[m}
.
L)
fm]
£
=
£ 05
4+~
= =
c =
=
a
=
[}
.

= B 5 t
N & by "'l:b‘ 4 & o &
o ¢ K L % . " gl
5 &y ¥ g g .
¥ & i e o ¥
o W Rt & *?

-0.5

Read RL agent compares well with FR-FCFS
Performs marginally better than FR-FCFS in 10/15 workloads

Read RL Agent

B FRFCF: mReadRL

[vs Closed page)

% Increase in committed Ld /St

12

n.a

0.&

0.

I

0.

]

Precharge Module

bl-bl-fr-fr-1 cl-cl-c2-c2-1 fhawec2-c2-1 mMTe1

st-st-=t-st-1

% increase in Ld/%t commits

Overall Gain

bl-bl-fr-fr-1 cl-cl-cd-c2-1 Thawec2-c2-1 MT -1 st-st-=-5t-1

Performance improvement over write drain, FCFS and closed page policy

Issues Faced

e RL agent did not learn policy when the state space was large
o Used neural networks to generalize state-action-reward table
o Used smoothing functions to generalize state-action-reward table
o Figured splitting the agent into parts is a good way to test.

e Tried to involve deep learning to generalize Reward table
o Moved USIMM to C++ and integrated a deep learning framework
o Current state space too small for deep networks, not image-like.
o Convergence issues could arise with neural networks.

Conclusion

RL may work well for DDR controllers

State space formulation is key for RL

Convergence of the Reward/Q table is important.

Write policy is crucial for boost over conventional controllers.

Thank You

