
I The author argues that multiprocessors should support

sequential consistency because—with speculative

execution—relaxed models do not provide sufficient

additional performance to justify exposing their

complexity to the authors of low-level software.

0018-9162/98/$10.00 © 1998 IEEE28 Computer

Multiprocessors
Should Support
Simple Memory-
Consistency Models

n the future, many computers will contain multiple
processors, in part because the marginal cost of
adding a few additional processors is so low that only
minimal performance gain is needed to make the addi-
tional processors cost-effective.1 Intel, for example,
now makes cards containing four Pentium Pro proces-
sors that can easily be incorporated into a system.
Multiple-processor cards like Intel’s will help multi-
processing spread from servers to the desktop.

But how will these multiprocessors be programmed?
The evolution of the programming model already
under way is likely to continue.

• Multiprocessors will continue to be used for mul-
titask programming, which lets developers opti-
mize conventional, single-threaded programs for
multiprocessing.

• Critical parts of processor-intensive applications
will continue to be parallelized for multiprocess-
ing—to use multiple threads that share data
through shared memory.

• Someday, we may be able to build compilers that
can effectively parallelize programs or we may be

able to provide tools or abstractions that allow
developers to program in parallel.

But what hardware do we need to support shared
memory threads? The hardware should provide a
well-defined interface for shared memory and it should
provide a high-performance implementation of the
interface.

UNIPROCESSOR MEMORY
Defining a shared memory multiprocessor’s inter-

face to memory is easier if we first consider how mem-
ory is defined in a uniprocessor. A uniprocessor
executes instructions and memory operations in a
dynamic execution order called program order. Each
read must return the value of the last write to the same
address. If the uniprocessor is capable of multitask-
ing, two options exist. If a program executes as a sin-
gle thread without sharing memory, then the
programmer’s memory interface is the same as for a
uniprocessor without multitasking.

The situation is more complex, on the other hand, if
a program has multiple threads sharing memory (or the

Cy
be

rs
qu

ar
e

Mark D. Hill
University of Wisconsin, Madison

.

August 1998 29

program shares memory with other running programs
or is the OS itself). In this case, the last write to an
address could be made by itself (the same thread) or by
another thread (that was context-switched onto the
processor since this thread’s last write to the address).

Programmers can model a multitasking uniproces-
sor as a merging of the program orders of each exe-
cuting thread into a single, totally ordered processor
execution. Most programmers, for example, would
expect the code fragment in Figure 1 to set
data_copy to the value of new. Here, accesses to
flag are an example of synchronization, because their
purpose is to coordinate accesses to data.

MIDDLEWARE
Most computers today, however, are programmed

in high-level languages such as C, C++, and Java. This
practice creates two memory interface levels. At the
higher level, each language defines memory for its pro-
grammers. At the lower level, hardware defines mem-
ory for low-level software, called middleware.
Middleware includes compilers, libraries, device dri-
vers, OSs, and some key components of important
applications (such as databases, messaging systems,
and distributed computing frameworks).

Software written at a high level requires that com-
pilers translate high-level memory operations into
low-level ones in a manner that preserves memory
semantics. In Figure 1, for example, a compiler should
not reorder P1’s stores to data and flag. Posix
threads, for example, recommend that synchroniza-
tion be encapsulated in library calls, such as
pthread_mutex_lock().

MEMORY CONSISTENCY MODELS
The interface for memory in a shared memory mul-

tiprocessor is called a memory consistency model.
Similar to a uniprocessor, high-level programming
induces the two levels of memory consistency mod-
els, depicted in Figure 2: high-level models for each
high-level language and one low-level model for hard-
ware. This article is primarily concerned with hard-
ware memory consistency models.

A multiprocessor can use the same relatively simple
memory interface as a multitasking uniprocessor.
Leslie Lamport formalized this memory consistency
model as sequential consistency (SC).2

Perhaps surprisingly, the hardware memory con-
sistency models of most commercial multiprocessors
are not SC because alternative relaxed models are
believed to facilitate high-performance implementa-
tions better. Some relaxed models just relax the order-
ing from writes to reads (processor consistency, IBM
370, Intel Pentium Pro, and Sun’s Total Store Order),
while others aggressively relax the order among all
normal reads and writes (weak ordering, release con-

sistency, DEC Alpha, IBM PowerPC, and Sun’s
Relaxed Memory Order).3-5 (Also see William Collier’s
tools for distinguishing memory models at
http://www.infomall.org/diagnostics/archtest.html.)

Many academics, including myself, have long advo-
cated relaxed models over SC. But the advent of spec-
ulative execution has changed my mind about relaxed
models and SC. Multiprocessor hardware should imple-
ment SC or, in some cases, models that just relax the
ordering from writes to reads. I now see aggressively
relaxed models as less attractive, because the future per-
formance gap between the aggressively relaxed models
and SC will be in the range of 20 percent or less.

I present my case by first reviewing SC and relaxed
models and then examining the performance gap and
complexity of reasoning with relaxed models.

SEQUENTIAL CONSISTENCY
Lamport defined a multiprocessor to be sequentially

consistent if

• the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and

• the operations of each individual processor were
to appear in this sequence in the order specified
by its program.

The principal benefit to selecting SC as the interface to
shared memory hardware is that SC is what people
expect. If you ask moderately sophisticated software
professionals what shared memory does, they will
likely define SC (albeit less precisely and less concisely
than Lamport). Since good interfaces should not
astonish their users, SC should be preferred.

Thread or processor P1 Thread or processor P2
data = new;
flag = SET;

while (flag != SET) {}
data_copy = data;

Figure 1. Is data_copy always set to new? Most programmers would expect the
code fragment to set data_copy to the value of new. Here accesses to flag are an
example of synchronization, because their purpose is to coordinate accesses to data.

Figure 2. A shared memory multiprocessor has one or more high-level language mem-
ory consistency models (depicted by the upper lines) and one hardware memory con-
sistency model (depicted by the lower line). Middleware must preserve high-level
memory semantics when translating programs to the hardware model. In contrast,
assembly language programs are written directly to the hardware model.

Assembly
language

Java
with threads

High performance
Fortran

C with
Posix model

Hardware memory-consistency model

.

30 Computer

A literal interpretation of SC’s definition, however,
might lead one to believe that implementing it requires
one memory module and precludes per-processor
caches, but this is not the case. Both SC and the
relaxed models (described below) allow many opti-
mizations important for high-performance imple-
mentations.6

SC and the relaxed models allow coherent caching,
nonbinding prefetching, and multithreading. SC, how-
ever, permits the following optimizations and keeps
the software interface simple. In particular, SC enables
middleware authors to use the same target as a mul-
titasking uniprocessor. Thus, it seems hardware archi-
tects should choose SC.

Coherent caching
All models permit coherent caching. Caches may be

private to processors or shared among some proces-
sors. They may be in one level or in multilevel hierar-
chies. A standard implementation of coherence
processes operations of each processor in program
order and does not perform a write until after it inval-
idates all other cached copies of the block.

Nonbinding prefetching
All models can use nonbinding prefetching, which

moves a block into a cache (in anticipation of use) but
keeps the block under the jurisdiction of the coherence
protocol. Nonbinding prefetches affect memory per-
formance but not memory semantics, because the
prefetched block can be invalidated if another proces-
sor wishes to write to the block. Nonbinding prefetches
can be initiated to overlap cache miss latency (with
computation or other misses) by either hardware or
software, through special prefetch instructions.

Multithreading
Finally, all models can support multithreading,

where a processor contains several “hot” threads (or
processes) that it can run in an interleaved fashion. A
multiprocessor with n k-way multithreaded proces-
sors behaves like a multiprocessor with n k conven-
tional processors. The implementation of multi-
threaded hardware, however, can switch threads on
long-latency events (to hide cache misses, for exam-
ple), can switch every cycle, or can simultaneously exe-
cute multiple threads each cycle.

RELAXED MODELS
Despite SC’s advantages, most commercial hardware

architectures have selected alternatives to SC called

relaxed (or weak) memory consistency models. Relaxed
models were initially used to facilitate additional imple-
mentation optimizations, whose use is precluded by SC
without the complexity of speculative execution.

SC, for example, makes it hard to use write buffers,
because write buffers cause operations to be presented
to the cache-coherence protocol out of program order.
Straightforward processors are also precluded from
overlapping multiple reads and writes in the memory
system. This restriction is crippling in systems with-
out caches, where all operations go to memory. In sys-
tems with cache coherence—which are the norm
today—this restriction impacts activity whenever
operations miss or bypass the cache. (Cache bypass-
ing occurs on uncacheable operations to I/O space,
some block transfer operations, and writes to some
coalescing write buffers.)

Relaxing write-to-read order
Defining relaxed models is complex. The class that

Adve and Gharachorloo called relaxing write-to-read
program order3—sometimes called the processor-con-
sistent models—more or less exposes first-in first-out
(FIFO) write buffers to low-level software. This means
that a processor’s writes may not immediately affect
other processors, but that when they do the writes are
seen in program order.

If a processor does write x, write flag, and
read y, for example, it can be sure that x is updated
before flag, but it cannot know if either is done when
it reads y. All common processors also make sure that
they see their own writes immediately (through write
buffer bypassing, for example). This ensures that these
models have no effect on uniprocessor behavior.

Furthermore, the difference from SC makes no dif-
ference to most shared memory programs, because
most programs produce shared data by writing the
data and then writing a flag or counter (as in Figure 1).
Programs only observe differences from SC in convo-
luted examples. In the code fragment illustrated in
Figure 3, for example, these models allow both
x_copy and y_copy to obtain old values, while SC
requires that at least one gets the value of new.

Specific models in this class include Wisconsin/
Stanford processor consistency (PC), IBM 370, Intel
Pentium Pro, and Sun’s Total Store Order. These mod-
els differ in subtle ways, such as whether a processor
reading its own write ensures that other processors
also see it. All of the commercial models also guaran-
tee causality. Causality requires that all other proces-
sors see the effect of a processor’s operation when any
other processor sees it. In Figure 4, causality ensures
that data_copy gets the value new. Without causal-
ity, processor consistency can fail to look like SC in
many cases involving three or more processors.

These hardware memory consistency models make

Processor P1 Processor P2
x = new; y = new;
y_copy = y; x_copy = x;

Figure 3. Processor consistency (PC), IBM 370, Pentium
Pro, and Total Store Order allow both x_copy and
y_copy to get old values, which violates sequential con-
sistency.

.

August 1998 31

it easier for hardware implementors to use hardware
optimizations found in uniprocessors. In particular,
processor writes can be buffered in a FIFO write buffer
in front of the cache and coherence protocol. Values
of these buffered writes can often be bypassed to sub-
sequent reads—by that processor to the same
address—even before coherence permission has been
obtained. This optimization is especially important
for architectures with few general-purpose registers,
such as Intel’s IA 32.

Furthermore, these models have negligible impact
on middleware authors. If these authors assume SC,
they will rarely be surprised by the model. These mod-
els look exactly like SC for the common idioms of data
sharing (as in Figure 1 and Figure 4, for example, but
not in Figure 3).

Relaxing all orders
The class relaxing all orders seeks to allow all the hard-

ware implementation options of uniprocessors. Members
of this class may completely reorder reads and writes and
include USC/Rice weak ordering (WO), Stanford release
consistency (RC), DEC Alpha, IBM PowerPC, and Sun’s
Relaxed Memory Order). Regardless of reordering, these
models make sure that a processor sees its own reads and
writes in program order.

The models differ in subtle ways and in how pro-
grammers restore order between memory operations
to make examples like Figure 1 behave as expected.
WO and RC ask programmers to distinguish certain
reads and writes as synchronization, so the hardware
can handle these more carefully.

The commercial models add special operations—
variously called fences, barriers, membars, and
syncs—to tell the system when order is required.
Figure 5 illustrates how the example in Figure 1 could
be augmented for Sun RMO. The membar
#StoreStore ensures data is written before flag,
while membar #LoadLoad ensures flag is read before
data. Implementations of the models in this class can
exploit many optimizations, because they need only
implement order between operations when software
asks for it and can be aggressively out of order the rest
of the time. Processors can complete reads and writes
to cache, for example, even while previous reads and
writes (in program order) have not obtained coher-
ence permission.

Furthermore, a hardware model from the relaxing all
orders class does not appear to be too great a challenge
for compiler writers. For sequential high-level languages
with threads, programmers often use synchronization
libraries or declare critical variables volatile. In these
cases, the compiler or library writer can add appropri-
ate fences. For sequential languages with parallelizing
compilers, the compiler inserts the synchronization so it
can know where the fences need to be.

THE PERFORMANCE GAP
Basically, relaxed models offer more hardware imple-

mentation options than SC and appear to use infor-
mation that programmers know anyway. So it appears
hardware should use relaxed models instead of SC.

To the contrary, the performance gained by using
relaxed models does not justify their complexity. The
principal argument for relaxed models is that using
them can yield higher performance than with SC. So
what is the performance gap between relaxed models
and SC? The answer depends on many processor
implementation parameters.

Two observations by Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy7 have reduced the
performance gap relative to initial expectations.

Overlapped coherence operations
SC hardware does not need to serialize the operations

that obtain coherence permission (such as nonbinding
prefetches and cache misses). Instead, SC can overlap
these operations just like relaxed implementations.

SC implementations, however, should perform the
actual reads and writes to and from the cache in pro-
gram order. Thus, SC implementations can handle
four cache misses on the sequence read A, write
B, read C, write D in time modestly longer than
handling one miss and three hits. Using a nonblocking
cache, an SC implementation could pipeline get
shared block A, get exclusive block B,
get shared block C, get exclusive block
D and then rapidly perform read A, write B,
read C, write D as a series of cache hits.

Speculative execution
The advent of speculative execution allows both

relaxed and SC implementations to be more aggres-

Processor P1 Processor P2 Processor P3
data = new;
flag1 = SET;

while
(flag1 != SET){}
flag2 = SET;

while
(flag2 != SET){}
data_copy = data;

Figure 4. Causality is needed to ensure data_copy is set to new.

Processor P1 Processor P2
data = new;
membar #StoreStore
flag = SET;

while (flag != SET) {}
membar #LoadLoad
data_copy = data;

Figure 5. Memory barriers (membars) to ensure data_copy are always set to new
under Sun RMO.

.

32 Computer

sive. With speculative execution, a processor performs
instructions eagerly. Sometimes instructions must be
undone when speculations on previous instructions
prove incorrect (as they are in mispredicted branches,
for example).

A processor commits (or retires) an instruction
when it is sure that an instruction will not need to be
undone. Doing so usually frees up implementation
resources. Instructions commit when

• all previous instruction has already committed,
and

• the instruction’s operation itself commits.

A load or store operation commits when it is certain
to read or write an appropriate memory value.

Speculative execution allows both relaxed and SC
implementations to perform load and store operations
speculatively and out of order. In some cases, how-
ever, relaxed implementations can commit memory
operations sooner than SC implementations.

Consider, for example, a program that wishes to
read A (which misses) and read B (which hits).
Both relaxed and SC processors can perform the read
B before even beginning the read A. Furthermore,
relaxed processors can sometimes commit read B
without waiting for read A to commit.

SC processors, however, cannot commit read B
until read A commits or at least obtains coherence
permission for the block containing A. Read B can-
not be committed because it may need to be unrolled
if the block containing B must be invalidated due to an
exclusive request by another processor before this
processor obtains coherence permission to block A.
These sorts of techniques are already used in the HP
PA-8000, Intel Pentium Pro, and MIPS R10000.

While the speculative techniques are complex,
their implication is simple: Relaxed and SC imple-
mentations can do all the same speculations, but

sometimes relaxed implementations can commit
memory operations sooner. Thus, the performance
gap between relaxed and SC implementations should
narrow. The gap will be nonzero, however, if SC
implementations

• undo instructions more often or
• more frequently exhaust implementation re-

sources for uncommitted instructions.

Measuring the current performance gap depends on
benchmarks, memory latencies, and myriad proces-
sor and cache implementation parameters.

Some current numbers
Parthasarathy Ranganathan and colleagues8,9 pro-

vide an example of the academic state of the art in
1997. They simulate a workload of six scientific appli-
cations on a MIPS R10000-like processor using four-
way instruction issue, dynamic scheduling with a
64-instruction window, speculative execution, caches
that support outstanding misses to up to eight distinct
blocks, and many other assumptions that can be found
in the paper. The six scientific applications tested in
Figure 6 are Radix, Fft, and Lu,10 Water and MP3d,11

and Erlebacher.12

I report on four memory consistency model imple-
mentations. SCimpl is an aggressive implementation
of SC that uses hardware prefetching, speculative
loads, and store buffering. PCimpl relaxes write-to-
read program order and uses prefetching, speculative
loads, and store buffering. RCimpl relaxes all orders
and can use prefetching, speculative loads, and store
buffering. SCimpl++ is an SC implementation that
uses much more hardware and some new ideas
described in Ranganathan and colleagues.9

Figure 6 shows application execution times from
Ranganathan and colleagues9 normalized to the exe-
cution time for SCimpl. PCimpl improves on SCimpl’s
execution by 0.8 to 23.6 percent while RCimpl pro-
vides 0.0 to 37.2 percent improvement. SCimpl++
shows that the performance gap can be narrowed with
much more hardware, but this comparison is unfair
since PCimpl and RCimpl could also use more hard-
ware. (I quote the RCimpl version that has the best
performance overall. This version disables prefetch-
ing and speculative loads whose overheads slightly
surpass their benefits because RCimpl already over-
laps so many memory references.)

The performance gap for the whole workload
depends on how often and long each program is run.
If we simplistically assume that each program runs for
a fixed amount of time under SCimpl, then workload
execution time under a model is the arithmetic aver-
age of program execution times. Doing this means that
PCimpl and RCimpl reduce execution time by 10 per-

Figure 6. Execution time results using various memory con-
sistency models for six well-known scientific application
tests used to simulate workload on a MIPS R10000-like
processor.

120

80

100

60

40

20

0

Ex
ec

u
ti

o
n

ti
m

e
n

o
rm

al
iz

ed
 t

o
 S

C

Er
le

b
ac

h
er Ff

t

Lu

M
P3

d

R
ad

ix

W
at

er

A
ve

ra
g

e

PC
RC
SC++

.

August 1998 33

cent and 16 percent, respectively. These numbers cor-
respond to performance improvements of 11 percent
for PCimpl and 20 percent for RCimpl.

The performance gap on other workloads would be
different and might be smaller. Relaxed models are
designed for the instruction-level parallelism of scien-
tific workloads, which tends to be larger than those
for other workloads, such as OSs and databases.

The next ten years
It is easy to argue that over the next 10 years the per-

formance gap will grow, because the latency to mem-
ory—measured in instruction issue opportunities—is
likely to grow. On the other hand, I see two reasons
that make the performance gap likely to shrink.

First, future microprocessor designers will be able
to apply more transistors to enhance the effectiveness
of known techniques for improving memory system
performance. These techniques range from mundane
measures like larger caches and more concurrent cache
misses to sophisticated speculation and prefetching
techniques. Increasing the instruction window size,
for example, will improve the performance of both SC
and relaxed implementations by making instruction-
window-full stalls less likely. The increased window
size will also reduce the performance gap if the
absolute difference in stalls gets smaller.

Second, architects will invent new microarchitec-
tural techniques that, with speculation, will be applied
to both SC and relaxed models. Some of these tech-
niques are already gestating, as can be found in a
recent special issue of Computer on billion-transistor
architectures (Sept. 1997) and in annual proceedings
of conferences.

In 1996, Intel’s Albert Yu13 re-examined the com-
pany’s 1989 predictions. He found that the predic-
tions were accurate on technology (like the projected
number of transistors per chip), but that they under-
estimated processor performance by a factor of four
because they didn’t anticipate the speed of microar-
chitecture innovation. I expect this innovation to con-
tinue.

If the performance gap is less than 20 percent, what
will happen with relaxed models? Will middleware
authors still find it worthwhile to program with
relaxed models? The answer depends on how much
burden relaxed models add to middleware authors.

REASONING WITH RELAXED MODELS
Before considering relaxed models, we need to con-

sider the context. Authoring parallel middleware is
difficult. Many programming projects already stretch
the intellectual limits of programmers to manage com-
plexity while adding features, making behavior more
robust, and staying on schedule. Dealing with relaxed
models must necessarily either add a real cost (like

personnel or schedule delays) or an opportunity
cost (meaning that something else is not done).

The costs of using relaxed models depend, in
large part, on the complexity of reasoning with
them. I find reasoning with relaxed models in
the class relaxing all orders more difficult than
reasoning with SC. Even though I have coau-
thored a half-dozen papers on the subject, I still
have to think carefully before I can correctly
make any precise statement about one of the
existing models. Certainly middleware authors can
understand the models, but do they want to spend
their time dealing with definitions of various partial
orders and nonatomic operations? (A nonatomic oper-
ation allows its effects to be seen by some processors
before others, in a manner detectable by running pro-
grams.)

Middleware authors must understand the models
to a fairly good level of detail to be able to include
sufficient fences without adding too many unneces-
sary ones. Too many unnecessary fences will reduce
the performance gap seen in practice. In addition,
authors of portable middleware (like compilers) need
to master different relaxed models for different hard-
ware targets.

What about hardware memory consistency models
in the class relaxing write-to-read program order? In
my opinion, middleware authors targeting commer-
cial models of this class have an easier task than those
targeting the class relaxing all orders. Middleware
authors can reason with SC and not have to consider
placing fences as long as they avoid using convoluted
code.

On the other hand, compiler writers must still
understand these models if they want to ensure that
convoluted code will behave as written.

THE BOTTOM LINE
I recommend that future systems implement SC as

their hardware memory consistency model. I do not
believe that the performance boost from implement-
ing models in the class relaxing all orders is enough
to justify the additional intellectual burden the relaxed
models place on the middleware authors of complex
commercial systems.

There are, however, several other viable alternatives.
First, you could provide a first-class SC implementa-
tion and add optional relaxed support through addi-
tional instructions—like Sun’s block copy
instructions—or multiple memory consistency model
modes.5

You must exercise care when adding options, how-
ever, because doing so incurs both implementation and
verification costs. Multiple modes, in particular, can
add significant verification costs if they enable a large
new cross-product of hardware interactions.

The performance
gained by using

relaxed models does
not justify their

complexity.

.

34 Computer

Second, you can implement a model in the class
relaxing write-to-read program order. These models
allow hardware to play a few tricks more easily than
with SC without affecting most middleware authors.
This option makes most sense for new implementa-
tions of existing systems that have already relaxed
write-to-read program order. It can lead to subtle com-
patibility problems, however, if old systems provide
SC. You can also use optional relaxed support with
these models.

Let me close by comparing instruction sets and
hardware memory consistency models, two
interfaces on the hardware/software boundary.

Almost all current instruction sets present program-
mers and compilers with a sequential model (for each
processor). Current implementations, however, now
use complex pipelines, out-of-order execution, and
speculative execution to perform instructions out of
program order, while at the same time using consid-
erable logic to preserve the appearance of program
order to software.

For the memory consistency model interface, we
have a similar choice. With SC, we can hide the out-
of-order complexity from software at some cost in
implementation complexity. With relaxed models,
complexity is visible to the software interface. As with
instruction sets, we should use SC to keep complexity
off the interface and in the implementation where it
belongs. ❖

Acknowledgments

The ideas in this article crystallized through inter-
actions with many people at Wisconsin and at Sun
Microsystems during my 1995-1996 sabbatical, which
Greg Papadopoulos graciously supported. I thank the
following people, who may or may not agree with me,
for their constructive comments: Sarita Adve, Doug
Burger, William Collier, Babak Falsafi, Kourosh
Gharachorloo, Andy Glew, John Hennessy, Rebecca
Hoffman, Alain Kägi, Shubu Mukherjee, Thomas
Ruf, Jim Smith, Guri Sohi, and Dan Sorin. This work
is supported in part by Wright Laboratory Avionics
Directorate, Air Force Material Command, USAF,
under grant #F33615-94-1-1525 and ARPA order no.
B550, NSF Grants MIP-9225097 and MIPS-9625558,
and donations from Sun Microsystems.

References

1. D.A. Wood and M.D. Hill, “Cost-Effective Parallel
Computing,” Computer, Feb. 1995, pp. 69-72.

2. L. Lamport, “How to Make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs,” IEEE
Trans. on Computers, Sept. 1989, pp. 690-691.

3. S.V. Adve and K. Gharachorloo, “Shared Memory Con-

sistency Models: A Tutorial,” Computer, Dec. 1996, pp.
66-76.

4. S.V. Adve, Designing Memory Consistency Models for
Shared Memory Multiprocessors, doctoral dissertation,
CS Dept., Univ. Wisconsin-Madison, Nov. 1993.

5. K. Gharachorloo, Memory Consistency Models for
Shared Memory Multiprocessors, doctoral dissertation,
Computer Systems Laboratory, Stanford University, Stan-
ford Calif. Dec. 1995.

6. A. Gupta et al., “Comparative Evaluation of Latency
Reducing and Tolerating Techniques,” Proc. 18th
Annual Int’l Symp. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., June 1991, pp. 254-263.

7. K. Gharachorloo, A. Gupta, and J. Hennessy, “Two
Techniques to Enhance the Performance of Memory
Consistency Models,” Proc. 1991 Int. Conf. Parallel
Processing, IEEE CS Press, Los Alamitos, Calif., Aug.
1991, pp. 355-364.

8. P. Ranganathan et al., “The Interaction of Software
Prefetching with ILP Processors in Shared Memory Sys-
tems,” Proc. 24th Int’l Symp. Computer Architecture, IEEE
CS Press, Los Alamitos, Calif., June 1997, pp. 144-156.

9. P. Ranganathan, V.S. Pai, and S.V. Adve, “Using Specu-
lative Retirement and Larger Instruction Windows to
Narrow the Performance Gap between Memory Con-
sistency Models,” Proc. Ninth ACM Symp. Parallel
Algorithms and Architectures (SPAA), ACM Press, New
York, June 1997, pp. 199-210.

10. S.C. Woo et al., “The SPLASH-2 Programs: Characteri-
zation and Methodological Considerations,” Proc. 22nd
Annual Int’l Symp. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., June 1995, pp. 24-36.

11. J.P. Singh, W.D. Weber, and A. Gupta, “SPLASH: Stan-
ford Parallel Applications for Shared Memory,” Proc.
19th Annual Int’l Symp. Computer Architecture, IEEE
CS Press, Los Alamitos, Calif., May 1992, pp. 5-14.

12. V.S. Adve et al., “An Integrated Compilation and Per-
formance Analysis Environment for Data Parallel Pro-
grams,” Proc. Supercomputing ’95, ACM Press, New
York, 1995.

13. A. Yu, “The Future of Microprocessors,” IEEE Micro,
Dec. 1996, pp. 46-53.

Mark D. Hill is professor and Romnes fellow in both
the Computer Sciences Department and the Electri-
cal and Computer Engineering Department at the
University of Wisconsin, Madison. He also codirects
the Wisconsin Wind Tunnel parallel computing pro-
ject with James Larus and David Wood. His current
research interests include memory systems of shared
memory multiprocessors and high-performance
uniprocessors. Hill received a BSE from the University
of Michigan, Ann Arbor, and MS and PhD in com-
puter engineering from the University of California,
Berkeley. Contact Hill at markhill@cs.wisc.edu.

.

