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ON-CHIP INTERCONNECTION
ARCHITECTURE OF THE

TILE PROCESSOR
........................................................................................................................................................................................................................................................

IMESH, THE TILE PROCESSOR ARCHITECTURE’S ON-CHIP INTERCONNECTION NETWORK,

CONNECTS THE MULTICORE PROCESSOR’S TILES WITH FIVE 2D MESH NETWORKS, EACH

SPECIALIZED FOR A DIFFERENT USE. TAKING ADVANTAGE OF THE FIVE NETWORKS, THE C-

BASED ILIB INTERCONNECTION LIBRARY EFFICIENTLY MAPS PROGRAM COMMUNICATION

ACROSS THE ON-CHIP INTERCONNECT. THE TILE PROCESSOR’S FIRST IMPLEMENTATION,

THE TILE64, CONTAINS 64 CORES AND CAN EXECUTE 192 BILLION 32-BIT OPERATIONS PER

SECOND AT 1 GHZ.

......As the number of processor cores
integrated onto a single die increases, the
design space for interconnecting these cores
becomes more fertile. One manner of
interconnecting the cores is simply to mimic
multichip, multiprocessor computers of the
past. Following past practice, simple bus-
based shared-memory multiprocessors can
be integrated onto a single piece of silicon.
But, in taking this well-traveled route, we
squander the unique opportunities afforded
by single-chip integration. Specifically, bus-
es require global broadcast and do not scale
to more than about 8 or 16 cores. Some
multicore processors have used 1D rings,
but rings do not scale well either, because
their bisection bandwidth does not increase
with the addition of more cores.

This article describes the Tile Processor
and its on-chip interconnect network,
iMesh, which is a departure from the
traditional bus-based multicore processor.

The Tile Processor is a tiled multicore
architecture developed by Tilera and in-
spired by MIT’s Raw processor.1,2 A tiled
multicore architecture is a multiple-instruc-
tion, multiple-data (MIMD) machine con-
sisting of a 2D grid of homogeneous,
general-purpose compute elements, called
cores or tiles. Instead of using buses or rings
to connect the many on-chip cores, the Tile
Architecture couples its processors using five
2D mesh networks, which provide the
transport medium for off-chip memory
access, I/O, interrupts, and other commu-
nication activity.

Having five mesh networks leverages the
on-chip wiring resources to provide massive
on-chip communication bandwidth. The
mesh networks afford 1.28 terabits per
second (Tbps) of bandwidth into and out
of a single tile, and 2.56 Tbps of bisection
bandwidth for an 8 3 8 mesh. By using
mesh networks, the Tile Architecture can
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support anywhere from a few to many
processors without modifications to the
communication fabric. In fact, the amount
of in-core (tile) communications infrastruc-
ture remains constant as the number of
cores grows. Although the in-core resources
do not grow as tiles are added, the
bandwidth connecting the cores grows with
the number of cores.

However, having a massive amount of
interconnect resources is not sufficient if
they can’t be effectively utilized. The
interconnect must be flexible enough to
efficiently support many different commu-
nication needs and programming models.
The Tile Architecture’s interconnect pro-
vides communication via shared memory
and direct user-accessible communication
networks. The direct user accessible com-
munication networks allow for scalar oper-
ands, streams of data, and messages to be
passed between tiles without system soft-
ware intervention. The iMesh interconnect
architecture also contains specialized hard-
ware to disambiguate flows of dynamic
network packets and sort them directly into
distinct processor registers. Hardware dis-
ambiguation, register mapping, and direct
pipeline integration of the dynamic net-
works provide register-like intertile com-
munication latencies and enable scalar
operand transport on dynamic networks.
The interconnect architecture also includes
Multicore Hardwall, a mechanism that
protects one program or operating system
from another during use of directly con-
nected networks.

The Tile Architecture also benefits from
devoting each of its five separate networks
to a different use. By separating the usage of
the networks and specializing the interface
to their usage, the architecture allows
efficient mapping of programs with varied
requirements. For example, the Tile Archi-
tecture has separate networks for commu-
nication with main memory, communica-
tion with I/O devices, and user-level scalar
operand and stream communication be-
tween tiles. Thus, many applications can
simultaneously pull in their data over the
I/O network, access memory over the mem-
ory networks, and communicate among
themselves. This diversity provides a natural

way to utilize additional bandwidth, and
separates traffic to avoid interference.

Taking advantage of the huge amount of
bandwidth afforded by the on-chip in-
tegration of multiple mesh networks re-
quires new programming APIs and a tuned
software runtime system. This article also
introduces iLib, Tilera’s C-based user-level
API library, which provides primitives for
streaming and messaging, much like a light-
weight form of the familiar sockets API.
iLib maps onto the user-level networks
without the overhead of system software.

Tile Processor Architecture overview
The Tile Processor Architecture consists

of a 2D grid of identical compute elements,
called tiles. Each tile is a powerful, full-
featured computing system that can in-
dependently run an entire operating system,
such as Linux. Likewise, multiple tiles can
be combined to run a multiprocessor oper-
ating system such as SMP Linux. Figure 1 is
a block diagram of the 64-tile TILE64
processor. Figure 2 shows the major com-
ponents inside a tile.

As Figure 1 shows, the perimeters of the
mesh networks in a Tile Processor connect
to I/O and memory controllers, which in
turn connect to the respective off-chip I/O
devices and DRAMs through the chip’s
pins. Each tile combines a processor and its
associated cache hierarchy with a switch,
which implements the Tile Processor’s
various interconnection networks. Specifi-
cally, each tile implements a three-way very
long instruction word (VLIW) processor
architecture with an independent program
counter; a two-level cache hierarchy; a 2D
direct memory access (DMA) subsystem;
and support for interrupts, protection, and
virtual memory.

TILE64 implementation
The first implementation of the Tile

Processor Architecture is the TILE64, a 64-
core processor implemented in 90-nm
technology, which clocks at speeds up to
1 GHz and is capable of 192 billion 32-bit
operations per second. It supports subword
arithmetic and can achieve 256 billion 16-
bit operations per second (ops), or half
a teraops for 8-bit operations. The TILE64
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processor consists of an 8 3 8 grid of tiles.
The chip includes 4.8 Mbytes of on-chip
cache distributed among the processors;
per-tile translation look-aside buffers
(TLBs) for instructions and data; and 2D
DMA between the cores and between main
memory and the cores. The Tile Processor
provides a coherent shared-memory envi-
ronment in which a core can directly access
the cache of any other core using the on-
chip interconnects. The cores provide
support for virtual memory and run SMP

Linux, which implements a paged memory
system.

To meet the power requirements of
embedded systems, the TILE64 employs
extensive clock gating and processor-nap-
ping modes. To support its target markets
of intelligent networking and multimedia,
TILE64 implements all the required mem-
ory and I/O interfaces on the SoC.
Specifically, it provides off-chip memory
bandwidth up to 200 Gbps using four
DDR2 interfaces, and I/O bandwidth in

Figure 1. Block diagram of the TILE64 processor with on-chip I/O devices (MAC: media access controller; PHY: physical

interface; XAUI: 10-Gbit Ethernet attachment unit interface; RGMII: reduced Gbit media-independent interface; Flexible I/O/

HPI: Flexible general-purpose I/O/host port interface; JTAG: test access port; UART: universal asynchronous receiver/

transmitter; PLL: phase-locked loop; PCIe: PCI Express; TWI: two-wire interface.

........................................................................

SEPTEMBER–OCTOBER 2007 17



excess of 40 Gbps through two full-duplex
34 PCIe interfaces, two full-duplex XAUI
ports, and a pair of gigabit Ethernet
interfaces. The high-speed I/O and memory
interfaces are directly coupled to the on-
chip mesh interconnect through an in-
novative, universal I/O shim mechanism.

TILE64 processor chips have been run-
ning in our laboratory for several months.
In addition to SMP Linux, they run off-the-
shelf shared-memory pthreads-based pro-
grams and embedded applications using the
iLib API.

Interconnect hardware
The Tile Architecture provides ample on-

chip interconnect bandwidth through the
use of five low-latency mesh networks. The
Tile Architecture designers chose a 2D mesh
topology because such topologies map
effectively onto 2D silicon substrates. The
networks are not toroidal in nature, but
rather simple meshes. Although it is possible
to map 2D toroids onto a 2D substrate,
doing so increases costs in wire length and
wiring congestion, by a factor of approxi-
mately 2.

The five networks are the user dynamic
network (UDN), I/O dynamic network
(IDN), static network (STN), memory
dynamic network (MDN), and tile dynamic
network (TDN). Each network connects
five directions: north, south, east, west, and
to the processor. Each link consists of two
32-bit-wide unidirectional links; thus, traf-
fic on a link can flow in both directions at
once.

Each tile uses a fully connected crossbar,
which allows all-to-all five-way communi-
cation. Figure 3 shows a grid of tiles
connected by the five networks, and
Figure 4 shows a single dynamic switch
point in detail.

Four of the Tile Architecture’s networks
are dynamic; these provide a packetized,
fire-and-forget interface. Each packet con-
tains a header word denoting the x and y
destination location for the packet along
with the packet’s length, up to 128 words
per packet. The dynamic networks are
dimension-ordered wormhole-routed. The
latency of each hop through the network is
one cycle when packets are going straight,

and one extra cycle for route calculation
when a packet must make a turn at a switch.
Because the networks are wormhole-routed,
they use minimal in-network buffering. In
fact, the network’s only buffering comes
from small, three-entry FIFO buffers that
serve only to cover the link-level flow-
control cost.

The dynamic networks preserve ordering
of messages between any two nodes, but do
not guarantee ordering between sets of
nodes. A packet is considered to be atomic
and is guaranteed not to be interrupted at
the receiving node. The dynamic networks
are flow controlled and guarantee reliable
delivery. As we discuss later, the dynamic
networks support scalar and stream data
transport.

The static network, which allows static
communications, does not have a packetized
format but rather allows static configuration
of the routing decisions at each switch
point. Thus, with the STN, an application
can send streams of data from one tile to
another by simply setting up a route

Figure 2. The view inside a tile.
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through the network and injecting a stream
of data. The data stream then traverses the
already set-up routers until the data reaches
the destination tile. This allows a circuit-
switched communications channel, ideal for
streaming data. The static network also
contains an auxiliary processor for reconfi-
guring the network in a programmatic
manner. This functionality is an improved
form of the Raw Processor’s static network
processor functionality.3

Network uses
The UDN primarily serves userland

processes or threads, allowing them to
communicate flexibly and dynamically,
with low latency. This is a departure from
the typical computer architecture, in which
the only userland communication between

threads is through shared-memory commu-
nication. By providing an extremely low-
latency user-accessible network, streams of
data, scalar operands, or messages can be
directly communicated between threads
running in parallel on multiple tiles without
involving the operating system. The Tile
Architecture also supplies userland inter-
rupts to provide a fast mechanism for
notifying userland programs of data arrival.

The Tile Architecture contains no unified
bus for communication with I/O devices.
Instead, I/O devices connect to the net-
works just as the tiles do. To support direct
communication with I/O devices and allow
system-level communications, the architec-
ture uses the IDN, which connects to each
tile processor and extends beyond the fabric
of processors into I/O devices. Both control

Figure 3. A 3 3 3 array of tiles connected by networks. (MDN: memory dynamic network;

TDN: tile dynamic network; UDN: user dynamic network; IDN: I/O dynamic network; STN:

static network.)
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information and streams of I/O data travel
over the IDN. The IDN also serves for
operating-system and hypervisor-level com-
munications. It is important to have
a dedicated network for I/O and system-
level traffic to protect this traffic from
userland code.

The caches in each tile use the MDN to
communicate with off-chip DRAM. The
TILE64 has four 64-bit DDR2/800 DRAM
controllers on chip, which connect to the
MDN at the edge of the tile arrays. These
memory controllers allow glueless interfac-
ing to DRAM. The MDN provides a mech-
anism for every tile to communicate with
every RAM controller on the chip. When
the cache needs to retrieve backing memory
from off-chip DRAM, the in-tile cache
controller constructs a message that it sends
across the MDN to the DRAM controller.
After servicing the transaction, the memory
controller sends a reply message across the
MDN. A buffer preallocation scheme en-
sures that the MDN runs in a deadlock-free
manner.

The TDN works in concert with the
MDN as a portion of the memory system.
The Tile Architecture allows direct tile-to-

tile cache transfers. The request portion of
tile-to-tile cache transfers transit the TDN,
and responses transit the MDN. To prevent
deadlock in the memory protocol, tile-to-
tile requests do not go over the MDN.
Thus, this task required an independent
communications channel.

The STN is a userland network. Userland
programs are free to map communications
channels onto the STN, thereby allowing an
extremely low-latency, high-bandwidth
channelized network—great for streaming
data.

Logical versus physical networks
When designing a multicore processor

with communication networks, it is often
desirable to have multiple independent
logical networks. Having multiple logical
networks allows for privilege isolation of
traffic, independent flow control, and traffic
prioritization. The Tile Architecture’s five
different networks could have been imple-
mented as logical or virtual channels over
one large network, or as independent
physical networks.

The choice to implement the TILE64’s
five logical networks with five physically
independent networks runs contrary to
much previous work and is motivated by
how the relative costs of network design
change for implementations on a single die.
The first surprising realization is that
network wiring between tiles is effectively
free. Modern-day multilayer fabrication
processes provide a wealth of wiring as long
as that wiring is nearest-neighbor and stays
on chip. If tiles shrink enough, the tile
perimeter could eventually be so small that
it would make wiring a challenge, but for
our small tile this issue was nowhere in
sight.

The second trade-off in on-chip network
design is the amount of buffer space
compared to wire bandwidth. In traditional
off-chip networks, the wire bandwidth is at
a premium, but on-chip buffering is
relatively inexpensive. With on-chip net-
works, the wiring bandwidth is high, but
the buffer space takes up silicon area, the
critical resource. In the TILE64 processor,
each network accounts for approximately
1.1 percent of a tile’s die area, of which

Figure 4. A single network crossbar.
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more than 60 percent is dedicated to
buffering. Because buffering is the domi-
nating factor, the TILE64 reduces it to the
absolute minimum needed to build efficient
link-level flow control. If virtual channels
were built with the same style of network,
each virtual channel would need additional
buffering equal to that of another physical
network. Thus, on-chip network design
reduces the possible area savings of building
virtual-channel networks because virtual-
channel networks do not save on the 60
percent of the silicon area dedicated to
buffering. If the design used buffers larger
than the minimum needed to cover the
flow-control loop, a virtual-channel net-
work would have opportunities to share
buffering that do not exist in the multiple-
physical-channel solution.

Another aspect of on-chip networks that
affects buffering is that they are more
reliable than interchip networks. This re-
liability mitigates the need for a lot of
buffering, which less-reliable systems use to
manage link failure. Finally, building mul-
tiple physical networks via replication
simplifies the design and provides more
intertile communication bandwidth.

Network-to-tile interface
To reduce latency for tile-to-tile commu-

nications and reduce instruction occupancy,
the Tile Architecture provides access to the
on-chip networks through register access
tightly integrated into the processor pipe-
line. Any instruction executed in the pro-
cessor within a tile can read or write to the
UDN, IDN, or STN. The MDN and TDN
are connected to each tile, but connect only
to the cache logic and are only indirectly
used by cache misses. There are no restric-
tions on the number of networks that can be
written or read in a particular instruction
bundle. Reading and writing networks can
cause the processor to stall. Stalling occurs if
read data is not available or a network write
is writing to a full network. Providing
register-mapped network access can reduce
both network communication latency and
instruction occupancy. For example, if an
add must occur and the result value must be
sent to another tile, the add can directly
target the register-mapped network without

the additional occupancy of a network
move.

Receive-side hardware demultiplexing
Experience has shown that the overhead

associated with dynamic networks is rarely
in the networks themselves; rather, it resides
in the receive-side software logic that
demultiplexes data. In a dynamic network,
each node can receive messages from many
other nodes. (A node can be a process on
a tile, or even a specific channel port within
a process on a given tile). For many
applications, the receive node must quickly
determine for any data item that it receives
which node sent the data.

One software-only solution to receive-
side demultiplexing is to augment each
message with a tag. When a new message
arrives, the receiving node takes an in-
terrupt. The interrupt handler then inspects
the tag and determines the queue in
memory or cache into which the message
should be enqueued. Then, when the node
wants to read from a particular sending
node, it looks into the corresponding queue
stored in memory and dequeues from the
particular queue into which the data was
sorted. Although this approach is flexible,
the cost associated with taking an interrupt
and implementing the sorting on the basis
of a tag in software can be quite expensive.
Also, reading from memory on the receive
side is more costly than reading directly
from a register provided by register-mapped
networks. For these reasons, we look to
hardware structures to accelerate packet
demultiplexing at a receiving node.

To address this problem, the Tile
Architecture contains hardware demulti-
plexing based on a tag word associated with
each network packet. The tag word can
signify the sending node, a stream number,
a message type, or some combination of
these characteristics. The UDN and IDN
implement receive-side hardware demulti-
plexing. Figure 5 shows an example use of
the demultiplexing hardware, with two
neighboring tiles communicating via the
UDN.

The Tile Architecture implements hard-
ware demultiplexing by having several in-
dependent hardware queues with settable
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tags into which data can be sorted at the
receive endpoint. The receiving node sets
the tags to some value. When the node
receives a message, a tag check occurs. If the
tag matches one of the tags set by the
receiving node as one of the tags that it is
interested in, the hardware demultiplexes
the data into the appropriate queue. If an
incoming tag does not match any of the
receive-side set tags, a tag miss occurs; the
data goes into a catch-all queue, and

a configurable interrupt can be raised. By
having a large tag space and a catch-all
queue, the physical queues can be virtua-
lized to implement a very large stream
namespace. In effect, the implemented
queues serve as a cache of the most recent
streams a receive node has seen. Figure 6
shows the implementation of the hardware
demultiplexing logic.

The UDN contains four hardware de-
multiplexing queues and a catch-all queue,
whereas the IDN contains two demultiplex-
ing queues and a catch-all queue. The
TILE64 implementation contains 128
words (512 bytes) of shared receive-side
buffering per tile, which can be allocated
between the different queues by system
software.

Together, the demultiplexing logic and
the streamlined network-to-tile interface let
the Tile Processor support operations that
require extremely low latency, such as scalar
operand transport, thus facilitating stream-
ing.

Flow control
It is desirable that on-chip networks be

a reliable data transport mechanism. There-
fore, all the networks in the Tile Architec-
ture contain link-level forward and reverse
flow control. The TILE64 implementation
uses a three-entry, credit-based flow-control
system on each tile-to-tile boundary. Three
entries is the minimum buffering needed to
maintain full-bandwidth, acknowledged
communications in the design. The archi-
tecture also uses this link-level flow control
to connect the switch to the processor and
memory system.

Although link-level flow control provides
a reliable base to work with, dynamic on-
chip networks require higher-level flow
control to prevent deadlocks on a shared
network and to equitably share network
resources. Even though the TILE64’s four
dynamic networks are replicas of each other,
they use surprisingly varied solutions for
end-to-end flow control. The strictest flow
control is enforced on the MDN, which
uses a conservative deadlock-avoidance pro-
tocol. Every node that can communicate
with a DRAM memory controller is
allocated message storage in the memory

Figure 5. Demultiplexing overview.

Figure 6. Receive-side demultiplexing hardware with tags.
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controller. Each node guarantees that it will
never use more storage than it has been
allocated. Acknowledgments are issued
when the DRAM controller processes a re-
quest. The storage space is assigned such
that multiple in-flight memory transactions
are possible to cover the latency of acknowl-
edgments. Because all in-flight traffic has
a preallocated buffer at the endpoint, no
traffic can ever congest the MDN.

The other memory network, the TDN,
uses no end-to-end flow control, but relies
solely on link-level flow control. The TDN
is guaranteed not to deadlock, because its
forward progress depends solely on that of
the MDN.

The two software-accessible dynamic net-
works, IDN and UDN, both implement
mechanisms to drain and refill the networks.
Thus, in the case of an insufficient-buffering
deadlock, the networks can be drained and
virtualized, using the off-chip DRAM as
extra in-network buffering. In addition to
this deadlock-recovery mechanism, the IDN
uses preallocated buffering with explicit
acknowledgments when communicating
with IDN-connected I/O devices. Commu-
nications on the UDN use different end-to-
end flow control, depending on the pro-
gramming model used. Buffered channels
and message passing use software-generated
end-to-end acknowledgments to implement
flow control. For applications using raw
channels (described later), only the demulti-
plex buffering is used, and it is up to the
programmer to orchestrate usage.

Protection
The Tile Architecture has novel features

not typically found in conventional multi-
core processors. Because it has directly
accessible networks, and particularly be-
cause it has user-accessible networks, usabil-
ity and modularity require that it also
protect programs from one another. It is
not desirable for one program to commu-
nicate with another program unrestrained.
Likewise, it is not desirable for a userland
program to directly message an I/O device
or another operating system running on
another set of tiles. To address these
problems, the Tile Architecture implements
a mechanism called Multicore Hardwall.

Multicore Hardwall is a hardware pro-
tection scheme by which individual links in
the network can be blocked from having
traffic flow across them. Multicore Hard-
wall protects every link on the UDN, IDN,
and STN, whereas traffic on the MDN and
TDN are protected by standard memory
protection mechanisms through a TLB.
Figure 7 shows multiple protection do-
mains between tiles for a 4 3 4 fabric of
tiles. If the processor attempts to send traffic
over a hardwalled link, the Multicore
Hardwall mechanism blocks traffic and
signals an interrupt to system software,
which can take appropriate action. Typical-
ly, the system software kills the process, but,
because Multicore Hardwalling can also
serve to virtualize larger tile fabrics, the
system software might save the offending
message and play it back later on a different
link. The network protection is implemen-
ted on outbound links; thus, it is possible to
have unidirectional links in the network on
which protection is set up in only one
direction. Figure 7 shows an example of this
arrangement at link L0.

Figure 7. Protection domains on a dynamic network.
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Shared-memory communication and ordering
When designing single-chip tiled proces-

sors, communication costs are low enough
that designers can consider alternative
approaches to traditional problems such as
shared memory. The TILE64 processor uses
neighborhood caching to provide an on-
chip distributed shared cache. Neighbor-
hood caching functions by homing data in
a single tile’s on-chip cache. This homing
decision is made by system software and is
implemented on a page basis via a tile’s
memory management unit. If a memory
address is marked local, the data is simply
retrieved from the local cache or, in the
event of a cache miss, from main memory.
If an address is marked as remote, a message
is sent over the TDN to the home tile to
retrieve the needed data. Coherency is
maintained at the home tile for any given
piece of data, and data is not cached at non-
home tiles. The tiles’ relative proximity and
high-bandwidth networks allow neighbor-
hood caching to achieve suitable perfor-
mance. Read-only data can be cached
throughout the system.

For communication with multiple net-
works or networks and shared memory, the
question of ordering arises. The Tile
Architecture guarantees that network in-
jection and removal occur in programmatic
order. However, there are no inter-network
guarantees within the network; thus, syn-
chronization primitives are constructed by
software out of the unordered networks.
When an application uses both memory and
network, a memory fence instruction is
required to make memory visible if memory
is used to synchronize traffic that flows over
the networks. Likewise, the memory fence
instruction is used when network traffic is
used to synchronize data that is passed via
shared memory.

Interconnect software
The Tile Architecture’s high-bandwidth,

programmable networks let software imple-
ment many different communication inter-
faces at hardware-accelerated speeds. Tilera’s
C-based iLib library provides programmers
with a set of commonly used communication
primitives, all implemented via on-chip
communication on the UDN. For example,

iLib provides lightweight socket-like stream-
ing channels for streaming algorithms, and
provides an MPI-like message-passing in-
terface for ad hoc messaging.

By providing several different communi-
cation primitives, iLib lets the programmer
use whichever communication interface is
best for the problem at hand. The UDN
network design—in particular, the demux
hardware—lets iLib provide all these com-
munication interfaces simultaneously, using
some demux queues for channel communi-
cation and others for message passing. As we
demonstrate later, the high-bandwidth, scal-
able network enables efficient burst commu-
nication for applications that require data
reorganization between computation phases.

Communication interfaces
There are two broad categories of UDN-

based communication in iLib: socket-like
channels and message passing.

The iLib channels interface provides long-
lived connections between processes or
threads. Semantically, each channel is a first-
in, first-out (FIFO) connection between two
processes. A channel send operation always
sends data to the same receiver. Generally,
a channel provides a point-to-point connec-
tion between two processes (a sender and
a receiver); this type of connection is often
used to implement producer-consumer com-
munication without worrying about shared-
memory race conditions. The UDN’s all-to-
all connectivity also lets iLib provide sink
channel topologies, in which many senders
send to one receiver. In this case, the receive
operation implicitly selects the next available
packet from any of the incoming FIFO
buffers. Sink channels are often used to
collect results from process-parallel programs,
in which many workers must forward their
results to a single process for aggregation.

iLib actually provides several channel
APIs, each optimized for different commu-
nication needs. Raw channels allow very
low-overhead communication, but each
FIFO buffer can use only as much storage
as is available in the hardware demux buffer
in each tile. Buffered channels have slightly
higher overhead but allow arbitrary
amounts of storage in each FIFO buffer
by virtualizing the storage in memory.
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Thus, buffered channels are appropriate for
applications that require a large amount of
buffering to decouple burstiness in a pro-
ducer-consumer relationship, whereas raw
channels are appropriate for finely synchro-
nized applications that require very low-
latency communication.

The message-passing API is similar to
MPI.4 Message passing lets any process in
the application send a message to any other
process in the application at any time. The
message send operation specifies a destina-
tion tile and a message key to identify the
message. The message receive operation lets
the user specify that the received message
should come from a particular tile or have
a particular message key. The ability to
restrict which message is being received
simplifies cases in which several messages
are sent to the same tile simultaneously; the
receiving tile can choose the order in which
it receives the messages, and the iLib
runtime saves the other messages until the
receiver is ready to process them. The ability
to save messages for later processing makes
message passing the most flexible iLib
communication mechanism: Any message
can be sent to any process at any time
without any need to establish a connection
or worry about the order in which the
messages will be received. Figure 8 presents
example code for the raw channels, buffered
channels, and messaging iLib APIs.

Table 1 shows the relative performance
and flexibility of the different iLib commu-
nication APIs. Raw channels achieve single-
cycle occupancy by sending and receiving via
register-mapped network ports. Buffered
channels are more flexible, letting the user
create FIFO connections with unlimited
amounts of in-channel buffering (the
amount of buffering is determined at
channel creation time), but they incur more

overhead because they use an interrupt
handler to drain data from the network.
Message passing is the most flexible, but also
the most expensive, interface. It provides
unlimited, dynamically allocated buffering
and out-of-order delivery of messages with
different message keys, but at the expense of
greater interrupt overhead. The data trans-
mission bandwidth for buffered channel
messages is actually the same as for raw
channels (they all use the same UDN), but
the interrupt and synchronization overhead
has a significant performance impact.

Implementation
The Tile interconnect architecture lets the

iLib communication library implement
many different forms of communication
using the same network. This makes the

Figure 8. iLib code examples.

Table 1. Performance and ordering properties of different UDN communication APIs.

Mechanism

Latency

(cycles)

Occupancy

(cycles)

Bandwidth

(bytes/cycle) Buffering Ordering

Raw channels 9 3 send, 1 receive 3.93 Hardware FIFO

Buffered channels 150 100 1.25 Unlimited, static FIFO

Message passing 900 500 1.0 Unlimited, dynamic Out of order; FIFO by key
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Tile Architecture a more flexible, more
programmable approach to parallel pro-
cessing than SoC designs that provide
interconnects only between neighboring
cores. In particular, each tile’s demux queue
and demux buffer let iLib efficiently
separate different flows of incoming traffic
and handle each flow differently.

For example, the implementation of raw
channels lets the programmer reserve a de-
mux queue for a single channel’s incoming
data. To connect a raw channel, iLib
allocates one of the receiving tile’s four
UDN demux queues and assigns its tag
value to a per-channel unique identifier. The
sending process or processes then send data
packets to that receiving tile, specifying the
same unique identifier that was mapped to
the now-reserved demux queue. Thus, all the
packets for a particular raw channel are
filtered into a particular demux queue. The
receive operation then simply reads data
directly from that queue. Because raw-
channel packets can be injected directly into
the network, the send operation requires only
a few cycles. Similarly, the receive operation
requires only a single register move in-
struction because the incoming data is
directed into a particular register-mapped
demux queue. In fact, because the receive
queue is register mapped, the incoming data
can be read directly into a branch or
computation instruction without any in-
termediate register copy.

Users of raw channels must implement
flow control to manage the number of
available buffers without overflowing them.
Often, the necessary flow control is imple-
mented as an ‘‘acked channel,’’ in which
a second FIFO buffer is connected to
transmit acknowledgments in the reverse
direction from the receiver to the sender. In
such an implementation, the channel receiver
begins by sending several credit packets to
the sender. When the sender needs to send, it
first blocks on the receive of a credit packet
and then sends the data packet. When the
receiver dequeues a data packet, it sends
a credit packet back to the sender.

The implementation of raw channels
demonstrates how iLib can reserve a demux
queue to separate out traffic for a particular
point-to-point channel. However, some

algorithms require considerable buffering
in the semantic FIFO buffer between the
sender and receiver. The required buffering
could be significantly larger than the
amount of storage in the UDN demux
buffer. In such cases, a demux queue can be
reserved for buffered-channel traffic. When
using buffered channels, the demux is
configured to generate an interrupt when
the demux buffer fills with data, allowing
the interrupt handler to drain the incoming
traffic into a memory buffer associated with
each buffered channel. The receive opera-
tion then pulls data from the memory
buffer instead of from a register-mapped
demux queue. Two key features of the Tile
Architecture allow efficient implementation
of these virtualized, buffered channels:
configurable interrupt delivery on demux
buffer overflow and low-latency interrupts.
Configurable interrupt delivery allows de-
livery of interrupts for buffered-channel
data but not for raw-channel data, and
low-latency interrupts let the data be rapidly
drained into memory. In fact, an optimized
interrupt handler can interrupt the pro-
cessor, save off enough registers to do the
work, and return to the interrupted code in
less than 30 cycles.

Finally, the message-passing interface
uses yet a third demux configuration option
to implement immediate processing of
incoming messages. When the message-
passing interface is enabled, the catch-all
demux queue is configured to interrupt the
processor immediately when a packet ar-
rives. To send a message, the ilib_msg_
send( ) routine first sends a packet contain-
ing the message key and size to the receiver.
The receiver is interrupted, and the mes-
saging engine checks to see whether the
receiver is currently trying to receive
a message with that key. If so, a packet is
sent back to the sender, telling it to transfer
the message data. If no receive operation
matches the message key, the messaging
engine saves the notification and returns
from the interrupt handler. When the
receiver eventually issues an ilib_msg_
receive( ) with the same message key, the
messaging engine sends a packet back to the
sender, interrupting it and telling it to
transfer data. Thus, the ability to configure

.........................................................................................................................................................................................................................

TILE PROCESSOR INTERCONNECT

.......................................................................

26 IEEE MICRO



a particular demux queue to interrupt the
processor when packets arrive lets iLib
implement zero-copy, MPI-style message
passing.

We have shown how the Tile intercon-
nect architecture allows iLib to separate out
different traffic flows and handle each flow
differently. Demux queues can be used to
separate out individual channels’ traffic and
map it to register mapped queues that will
only drain when the receiver reads from the
network registers. Alternatively, a demux
queue can be configured to interrupt the tile
when the demux buffer is full of data, so
that incoming traffic can be drained in large
bursts. And as a third option, a demux
queue can be configured to generate an
interrupt whenever traffic arrives, so that the
incoming packet can be processed promptly
and a response generated. These different
modes of operation can be used to
implement raw channels, buffered channels,
and message passing, respectively, all using
the same hardware and running as needed
by the application.

iLib characterization
Although software libraries provide ease

of programming and flow control, they also

introduce overhead on communication
channels. iLib is no exception: We now
turn to characterizing the performance of
the different forms of iLib channels.

iLib communications flow over the
UDN. The UDN hardware provides a max-
imum bandwidth of 4 bytes (one word) per
cycle. UDN links consist of two unidirec-
tional connections. The most primitive link
type is raw channels. For raw channels,
communicating data occurs at a maximum
of 3.93 bytes per cycle. The overhead is due
to header word injection and tag word
injection cost. Figure 9 compares the per-
formance of transferring different sizes of
packets using buffered channels and the iLib
messaging API. For the buffered-channels
case, a decent amount of overhead relates to
reading and writing memory. The messag-
ing interface incurs additional overhead
related to interrupting the receive tile. Both
buffered channels and messaging use the
same packets for bulk data transfer: an 18-
word packet consisting of one header word,
a tag word, and 16 words of data. Because
buffered channels and messaging use the
same messaging primitives, asymptotically,
they can reach the same maximum band-
width for large packet sizes.

Figure 9. Bandwidth versus packet size for buffer channels and messaging.
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Figure 10 examines the latency of buff-
ered channels and messaging as a function
of packet size. We conducted this test by
sending a packet of fixed size from one tile
to a neighboring tile and then having that
tile respond with a packet of the same size.
The latency is the time taken to complete
this operation, divided by 2. Regardless of
packet size, messaging incurs approximately
1,500 cycles more overhead than buffered
channels.

Applications
Several microbenchmarks are useful for

characterizing a chip’s interconnect. We
implemented the same applications in
multiple programming styles to demon-
strate each communication mechanism’s
relative communication overhead.

Corner turn
To illustrate the benefits of Tile’s flexible,

software-accessible, all-to-all interconnect
network, we examine a microbenchmark
commonly seen between phases of DSP
applications.

Image-processing applications operate on
multidimensional data. The image itself is
2D, and computation often requires pixels

from multiple images. Multicore processors
generally distribute these multidimensional
arrays across cores to exploit data parallelism.

Frequently, the most efficient data dis-
tribution for one stage of the application is
inefficient for another. For example, a 2D
frequency transform is implemented as
a series of 1D transforms on rows of data
and then a series of 1D transforms on
columns of data. In this scenario, we would
like each core to contain entire rows of the
array during the first phase, and then entire
columns during the second phase.

The process of reorganizing a distributed
array from distribution in one dimension to
distribution in another is known as a corner
turn.5 Implementing a corner turn requires
each core to send a distinct message to every
other core. Furthermore, these messages can
be relatively small. To perform well on
a corner turn, a multicore processor needs
a high-bandwidth network with minimal
contention and low message overhead.

To illustrate the performance and behav-
ior of the various networks, we implemen-
ted corner turn in four different ways. Two
factors distinguished these implementa-
tions: the network used to redistribute the
data and the network used to synchronize

Figure 10. Latency versus packet size for buffered channels and messaging.
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the tiles. Data was transmitted on either the
TDN, using shared memory, or the UDN,
using iLib’s raw channels. For each of the
data transmission methods, we implemen-
ted synchronization using either the STN or
the UDN. The combination of data trans-
mission methods and synchronization
methods yielded four implementations. To
measure an implementation’s efficacy, we
measured the achieved bandwidth of the
data reorganization.

Table 2 shows the results for the four
corner-turn implementations. The best-per-
forming implementation was clearly the one
transmitting data using raw channels and
synchronizing using the STN. Raw channels
provide direct access to the UDN and let
each word of data be transmitted with
minimal overhead. Furthermore, using the
STN for synchronization keeps the synchro-
nization messages from interfering with the
data for maximum performance. The draw-
backs of this implementation are that it
requires the programmer to carefully manage
the UDN and that it requires extra im-
plementation time to fully optimize.

The corner-turn implementation that uses
raw channels for data transmission and the
UDN for synchronization performed far
more poorly than the one using the STN for
synchronization. This was due to the overhead
of virtualizing the UDN for multiple logical
streams (the data and the synchronization).
When two logically distinct types of messages
must share the same network, the user must
add extra data to distinguish between the
types of messages. Deadlock is avoided by
sharing the available buffering between the
two types of messages. Both of these issues
add overhead to the implementation; in the
64-tile case, this overhead becomes very
destructive to performance.

The shared-memory implementations of
corner turn are far simpler to program, but
their performance is also lower than for
corner turn using raw channels and STN.
Both the ease of implementation and the
performance difference are due to the extra
overhead of sending shared data on the
TDN. For each data word that the user
sends on the TDN, the hardware adds four
extra header words. These extra words let
the hardware manage the network and avoid
deadlocks, so the program is far easier to
write, but it is limited in performance.
When data is sent over the TDN, the
synchronization method makes less of
a difference than for raw channels. This is
because the TDN implementation keeps
data and synchronization separate, despite
the synchronization method.

Dot product
Dot product, another widely used DSP

computation, takes two vectors of equal
length, multiplies the elements pairwise,
and sums the results of the multiplications,
returning a scalar value. Dot product has
wide applications in signal filtering, where
a sequence of input samples are scaled by
differing constants, and it is the basic
building block for finite impulse response
(FIR) filters.

To map a dot product across a multicore
processor, the input vectors are evenly
distributed across the array of processors.
A processor then completes all of the needed
multiplications and sums across the results.
Finally, a distributed gather-and-reduction
add is performed across all of the individual
processor’s results. To measure perfor-
mance, we used a 65,536-element dot
product. The input data set consisted of
16-bit values and computed a 32-bit result.

Table 2. Corner turn: performance comparison of shared memory versus raw channels.

Tile configuration

Matrix size

(words)

Achieved bandwidth (Gbps)

Shared memory,

UDN sync

Shared memory,

STN sync

Raw channels,

UDN sync

Raw channels,

STN sync

2 3 2 256 3 128 9.54 13.97 9.73 13.91

4 3 4 512 3 256 17.67 23.69 19.18 46.58

8 3 8 1,024 3 512 37.99 42.92 11.24 96.85
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As with the corner turns, we mapped dot
product using two communications mech-
anisms, comparing Tilera shared memory
with iLib’s raw channels. Both methods were
optimized for the architecture. Table 3
compares the two communication mech-
anisms. The results indicate that the shared-
memory implementation contains higher
communication overhead and hence does
not scale as well as the raw-channel imple-
mentation. Another noteworthy result is the
performance jump from 2 to 4 tiles. Whereas
the computation resources only double, the
application exhibits superlinear speedup,
because this is the point where the data sets
completely fit in a tile’s L2 cache.

I n some cases, design decisions in-
volving multicore interconnects fly in

the face of conventional multi-chip multi-
processor wisdom. For example, when net-
works are integrated on chip, multiple
physical networks can be superior to virtual
channel networks. The Tile Processor uses
an unconventional architecture to achieve
high on-chip communication bandwidth.
The effective use of this bandwidth is made
possible by the synergy between the hard-
ware architecture of the Tile Processor’s on-
chip interconnect and the software APIs that
use the interconnect. The iLib communica-
tion library uses numerous directly accessi-
ble networks to provide flexible communi-
cation mechanisms to meet the needs of
a variety of parallel applications. MICRO
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